Academia.eduAcademia.edu

Outline

Free-electron laser driven by the LBNL laser-plasma accelerator

2009, AIP Conference Proceedings

https://doi.org/10.1063/1.3080982

Abstract

A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

References (14)

  1. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nature Phys. 2, 696-699 (2006).
  2. D. A. Jaroszynski, R. Bingham, E. Brunetti, B. Ersfeld, J. Gallacher, B. van der Geer, R. Issac, S. P. Jamison, D. Jones, M. de Loos, A. Lyachev, V. Pavlov, A. Reitsma, Y. Saveliev, G. Vieux, and S. M. Wiggins, Philos. Trans. R. Soc. London, Ser. A 364, 689-710 (2006).
  3. C. B. Schroeder, W. M. Fawley, E. Esarey, and W. P. Leemans, "DESIGN OF AN XUV FEL DRIVEN BY THE LASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY," in Proceedings of FEL 2006, JACoW, www.JACoW.org, 2006, pp. 455-458.
  4. F. Grüner, S. Becker, U. Schramm, T. Eichner, M. Fuchs, R. Weingartner, D. Habs, J. Meyer-ter- Vehn, M. Geissler, M. Ferrario, L. Serafini, B. van der Geer, H. Backe, W. Lauth, and S. Reiche, Appl. Phys. B 86, 431-435 (2007).
  5. K. Nakajima, Nature Phys. 4, 92-93 (2008).
  6. K. Nakamura, B. Nagler, C. Tóth, C. G. R. Geddes, C. B. Schroeder, E. Esarey, W. P. Leemans, A. J. Gonsalves, and S. M. Hooker, Phys. Plasmas 14, 056708 (2007).
  7. C. G. R. Geddes, K. Nakamura, G. R. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
  8. K. E. Robinson, D. C. Quimby, and J. M. Slater, IEEE J. Quantum Electron. QE-23, 1497-1513 (1987).
  9. M. Bakeman et al. (2008), in these Proceedings.
  10. M. Xie, Nucl. Instrum. Methods Phys. Res. A 445, 59-66 (2000).
  11. F. J. Grüner, C. B. Schroeder, A. R. Maier, S. Becker, and Y. M. Mikhailova, Phys. Rev. ST Accel. Beams (submitted, 2008).
  12. G. Lambert, T. Hara, D. Garzella, T. Tanikawa, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salieres, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M. Couprie, Nature Phys. 4, 296-300 (2008).
  13. E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, Phys. Rev. A 66, 021802(R) (2002).
  14. W. M. Fawley, A user manual for GINGER and its post-processor XPLOTGIN, Technical Report LBNL-49625, Lawrence Berkeley National Laboratory (2002).