Academia.eduAcademia.edu

Outline

Quantum groups and polymer quantum mechanics

2021, Modern Physics Letters A

https://doi.org/10.1142/S0217732321502291

Abstract

In Polymer Quantum Mechanics, a quantization scheme that naturally emerges from Loop Quantum Gravity, position and momentum operators cannot be both well defined on the Hilbert space [Formula: see text]. It is henceforth deemed impossible to define standard creation and annihilation operators. In this paper, we show that a [Formula: see text]-oscillator structure, and hence [Formula: see text]-deformed creation/annihilation operators, can be naturally defined on [Formula: see text], which is then mapped into the sum of many copies of the [Formula: see text]-oscillator Hilbert space. This shows that the [Formula: see text]-calculus is a natural calculus for Polymer Quantum Mechanics. Moreover, we show that the inequivalence of different superselected sectors of [Formula: see text] is of topological nature.

References (55)

  1. L. D. Faddeev, in Les Houches Summer School in The- oretical Physics: Recent Advances in Field Theory and Statistical Mechanics (1982).
  2. L. Castellani, J. Wess, and S. italiana di fisica, Quantum Groups and Their Applications in Physics: Varenna on Lake Como, Villa Monastero, 28 June-8 July 1994 , Proceedings of the International School of Physics "En- rico Fermi" (IOS Press, 1996).
  3. S. Majid, Foundations of Quantum Group Theory , On- line access with purchase: Cambridge Books Online (Cambridge University Press, 2000).
  4. Y. Manin, T. Raedschelders, and M. Van den Bergh, Quantum Groups and Noncommutative Geometry , CRM Short Courses (Springer International Publishing, 2018).
  5. Y. I. Manin, Quantum Groups and Non-Commutative Geometry. Lecture notes de l'Universitè de Montreal, Le publications du Centre de Recherches Mathematiques (CRM, 1988).
  6. S. Majid, Class. Quant. Grav. 5, 1587 (1988).
  7. E. Bianchi and C. Rovelli, Phys. Rev. D 84, 027502 (2011), arXiv:1105.1898 [gr-qc].
  8. S. Major and L. Smolin, Nucl. Phys. B 473, 267-290 (1996).
  9. K. Noui and P. Roche, Class. Quant. Grav. 20, 3175 (2003), arXiv:gr-qc/0211109.
  10. W. J. Fairbairn and C. Meus- burger, J. Math. Phys. 53, 022501 (2012), arXiv:1012.4784 [gr-qc].
  11. B. Dittrich, M. Martin-Benito, and S. Stein- haus, Phys. Rev. D 90, 024058 (2014), arXiv:1312.0905 [gr-qc].
  12. S. Jalalzadeh, A. J. S. Capistrano, and P. V. Moniz, Phys. Dark Univ. 18, 55 (2017), arXiv:1709.09923 [gr-qc].
  13. L. Freidel and E. R. Livine, Phys. Rev. Lett. 96, 221301 (2006), arXiv:hep-th/0512113.
  14. S. Majid, J. Math. Phys. 41, 3892 (2000), https://doi.org/10.1063/1.533331.
  15. F. Lizzi, M. Manfredonia, F. Mercati, and T. Poulain, Phys. Rev. D 99, 085003 (2019).
  16. F. Lizzi and F. Mercati, κ-poincaré-comodules, braided tensor products and noncommutative quantum field the- ory (2021), arXiv:2101.09683 [hep-th].
  17. A. Iorio, G. Lambiase, and G. Vitiello, Ann. Phys. 294, 234 (2001).
  18. A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 18, L117 (2001), arXiv:gr-qc/0107043.
  19. A. Ashtekar, J. Lewandowski, and H. Sahlmann, Class. Quant. Grav. 20, L11 (2003), arXiv:gr-qc/0211012.
  20. A. Ashtekar and P. Singh, Class. Quant. Grav. 28, 213001 (2011), arXiv:1108.0893 [gr-qc].
  21. S. M. Hassan, V. Husain, and S. S. Seahra, Phys. Rev. D 91, 065006 (2015), arXiv:1409.6218 [astro-ph.CO].
  22. Y. Bonder, A. Garcia-Chung, and S. Rast- goo, Phys. Rev. D 96, 106021 (2017), arXiv:1704.08750 [gr-qc].
  23. D. Jaffino Stargen, S. Shankaranarayanan, and S. Das, Phys. Rev. D 100, 086007 (2019), arXiv:1907.05863 [gr-qc].
  24. C. A. Escobar, E. Chan-López, and A. Martín- Ruiz, Phys. Rev. D 101, 046023 (2020), arXiv:2001.11059 [hep-ph].
  25. K. Blanchette, S. Das, S. Hergott, and S. Rastgoo, Phys. Rev. D 103, 084038 (2021), arXiv:2011.11815 [gr-qc].
  26. A. Garcia-Chung, J. B. Mertens, S. Rast- goo, Y. Tavakoli, and P. Vargas Mo- niz, Phys. Rev. D 103, 084053 (2021), arXiv:2012.09366 [gr-qc].
  27. A. Ashtekar, S. Fairhurst, and J. L. Willis, Class. Quant. Grav. 20, 1031 (2003), arXiv:gr-qc/0207106.
  28. A. Corichi, T. Vukašinac, and J. A. Zapata, Phys. Rev. D 76, 044016 (2007).
  29. H. A. Morales-Técotl, S. Rastgoo, and J. C. Ruelas, Phys. Rev. D 95, 10.1103/physrevd.95.065026 (2017).
  30. P. Woit, Quantum Theory, Groups and Representations: An Introduct (Springer International Publishing, 2017).
  31. D.-W. Chiou, Class. Quant. Grav. 24, 2603-2620 (2007).
  32. G. Date and N. Kajuri, Class. Quant. Grav. 30, 075010 (2013), arXiv:1211.0823 [gr-qc].
  33. G. Amelino-Camelia, M. Arzano, M. M. Da Silva, and D. H. Orozco-Borunda, Phys. Lett. B 775, 168-171 (2017).
  34. V. Husain and A. Kreienbuehl, Phys. Rev. D 81, 084043 (2010), arXiv:1002.0138 [gr-qc].
  35. E. Celeghini, S. De Martino, S. De Siena, M. Rasetti, and G. Vitiello, Ann. Phys. 241, 50-67 (1995).
  36. A. Iorio and G. Vitiello, Mod. Phys. Lett. B 08, 269 (1994).
  37. M. Fichtmüller, A. Lorek, and J. Wess, Zeitschrift für Physik C Particles and Fields 71, 533-537 (1996).
  38. K. Kowalski, J. Rembielinski, and L. C. Papaloucas, J. Phys. A 29, 4149 (1996), arXiv:quant-ph/9801029.
  39. L. C. Biedenharn, J. Phys. A 22, L873 (1989).
  40. A. J. Macfarlane, J. Phys. A 22, 4581 (1989).
  41. T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  42. J. Berra-Montiel, E. Castellanos, A. Molgado, and J. Trinidad-García, Mod. Phys. Lett. A 36, 2150045 (2021).
  43. G. Kunstatter, J. Louko, and J. Ziprick, Phys. Rev. A 79, 10.1103/physreva.79.032104 (2009).
  44. P. Jizba, H. Kleinert, and F. Scardigli, Phys. Rev. D 81, 084030 (2010), arXiv:0912.2253 [hep-th].
  45. E. Celeghini, M. Rasetti, and G. Vitiello, Phys. Rev. Lett. 66, 2056 (1991).
  46. A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations , Theo- retical and Mathematical Physics (Springer Berlin Heidelberg, 2012).
  47. E. Celeghini, T. D. Palev, and M. Tarlini, Mod. Phys. Lett. B 5, 187 (1991).
  48. V. Kac and P. Cheung, Quantum Calculus, Universitext (Springer New York, 2001).
  49. H. A. Kastrup, Phys. Rev. A 73, 052104 (2006), arXiv:quant-ph/0510234 [quant-ph].
  50. E. Damaskinskii and P. Kulish, J Math Sci 62, 2963-2986 (1992).
  51. H. Kleinert, Annalen der Physik 499, 117 (1987).
  52. L. Petruzziello and F. Illuminati, (2020), arXiv:2011.01255 [gr-qc].
  53. G. Acquaviva, A. Iorio, and M. Scholtz, Ann. Phys. 387, 317 (2017).
  54. G. Acquaviva, A. Iorio, and L. Smaldone, Phys. Rev. D 102, 106002 (2020).
  55. E. Celeghini, S. De Martino, S. De Siena, A. Iorio, M. Rasetti, and G. Vitiello, Phys. Lett. A 244, 455 (1998).