The polymer quantization in LQG: massless scalar field
Abstract
The polymer quantization of matter fields is a diffeomorphism invariant framework compatible with Loop Quantum Gravity. Whereas studied by itself, it is not explic- itly used in the known completely quantizable models of matter coupled to LQG. In the current paper we apply the polymer quantization to the model of massless scalar field coupled to LQG. We show that the polymer Hilbert space of the field degrees of freedom times the LQG Hilbert space of the geometry degrees of freedom admit the quantum constraints of GR and accommodate their explicit solutions. In this way the quantization can be completed. That explicit way of solving the quantum constraints suggests interesting new ideas.
References (24)
- T. Thiemann (2007) Modern Canonical Quantum General Relativity, Cambridge University Press, Cambridge
- C. Rovelli (2004) Quantum Gravity, Cambridge University Press, Cambridge
- R. Gambini, J. Pullin (1996) Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge University Press, Cambridge
- A. Ashtekar, J. Lewandowski (2004) Background independent quantum gravity: a status report, Class. Quantum Grav. 21, R53
- A. Ashtekar, J. Lewandowski (2001) Relation between polymer and Fock excitations, Class. Quantum Grav. 18, L117
- A. Ashtekar, H. Sahlmann, J. Lewandowski (2003) Polymer and Fock representation for a scalar field, Class. Quantum Grav. 20, L11
- T. Thiemann (1998) Kinematical Hilbert spaces for fermionic and Higgs quantum field theo- ries, Class. Quantum Grav. 15, 1487
- W. Kamiński, J. Lewandowski, M. Bobieński (2006) Background independent quantizations: the scalar field I, Class. Quantum Grav. 23, 2761
- W. Kamiński, J. Lewandowski, A. Oko lów (2006) Background independent quantizations: the scalar field II, Class. Quantum Grav. 23, 5547
- C. Rovelli, L. Smolin (1993) The physical hamiltonian in non-perturbative quantum gravity, Phys. Rev. Lett. 72, 446
- J. D. Brown, K. V. Kuchar (1995) Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51, 5600
- K. Giesel, T. Thiemann (2010) Algebraic quantum gravity (AQG). IV. Reduced phase space quantization of loop quantum gravity, Class. Quantum Grav. 27, 175009
- M. Domaga la, K. Giesel, W. Kamiński, J. Lewandowski (2010) Gravity quantized, Phys. Rev. D 82, 104038
- R. Gambini, J. Pullin (2012) Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables, arXiv:1207.6028
- A. Ashtekar, P. Singh (2011) Loop Quantum Cosmology: A Status Report, Class. Quantum Grav. 28, 213001
- M. Bojowald (2008) Loop Quantum Cosmology, Living Rev. Relativity 11, 4
- A. Ashtekar, J. Lewandowski (2001) Relation between polymer and Fock excitations, Class. Quantum Grav. 18, L117
- A. Ashtekar, S. Fairhurst, J. Willis (2002) Quantum gravity, shadow states, and quantum mechanics, Class. Quantum Grav. 20, 1031
- K. Fredenhagen, F. Reszewski (2006) Polymer state approximations of Schroedinger wave functions, Class. Quantum Grav. 23, 6577
- A. Ashtekar, T. Paw lowski, P. Singh (2006) Quantum Nature of the Big Bang: Improved dynamics, Phys. Rev. D 74, 084003
- W. Kamiński, J. Lewandowski (2008) The flat FRW model in LQC: the self-adjointness, Class. Quantum Grav. 25, 035001
- A. Ashtekar, M. Bojowald, J. Lewandowski (2003) Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys. 7, 233
- K. Giesel, H. Sahlmann (2012) From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity, Proceedings of the 3rd Quantum Geometry and Quantum Gravity School in Zakopane, arXiv:1203.2733
- J. Lewandowski, D. Marolf (1998) Loop constraints: A habitat and their algebra, Int. J. Mod. Phys. D7, 299