Academia.eduAcademia.edu

Outline

The polymer quantization in LQG: massless scalar field

Abstract

The polymer quantization of matter fields is a diffeomorphism invariant framework compatible with Loop Quantum Gravity. Whereas studied by itself, it is not explic- itly used in the known completely quantizable models of matter coupled to LQG. In the current paper we apply the polymer quantization to the model of massless scalar field coupled to LQG. We show that the polymer Hilbert space of the field degrees of freedom times the LQG Hilbert space of the geometry degrees of freedom admit the quantum constraints of GR and accommodate their explicit solutions. In this way the quantization can be completed. That explicit way of solving the quantum constraints suggests interesting new ideas.

References (24)

  1. T. Thiemann (2007) Modern Canonical Quantum General Relativity, Cambridge University Press, Cambridge
  2. C. Rovelli (2004) Quantum Gravity, Cambridge University Press, Cambridge
  3. R. Gambini, J. Pullin (1996) Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge University Press, Cambridge
  4. A. Ashtekar, J. Lewandowski (2004) Background independent quantum gravity: a status report, Class. Quantum Grav. 21, R53
  5. A. Ashtekar, J. Lewandowski (2001) Relation between polymer and Fock excitations, Class. Quantum Grav. 18, L117
  6. A. Ashtekar, H. Sahlmann, J. Lewandowski (2003) Polymer and Fock representation for a scalar field, Class. Quantum Grav. 20, L11
  7. T. Thiemann (1998) Kinematical Hilbert spaces for fermionic and Higgs quantum field theo- ries, Class. Quantum Grav. 15, 1487
  8. W. Kamiński, J. Lewandowski, M. Bobieński (2006) Background independent quantizations: the scalar field I, Class. Quantum Grav. 23, 2761
  9. W. Kamiński, J. Lewandowski, A. Oko lów (2006) Background independent quantizations: the scalar field II, Class. Quantum Grav. 23, 5547
  10. C. Rovelli, L. Smolin (1993) The physical hamiltonian in non-perturbative quantum gravity, Phys. Rev. Lett. 72, 446
  11. J. D. Brown, K. V. Kuchar (1995) Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51, 5600
  12. K. Giesel, T. Thiemann (2010) Algebraic quantum gravity (AQG). IV. Reduced phase space quantization of loop quantum gravity, Class. Quantum Grav. 27, 175009
  13. M. Domaga la, K. Giesel, W. Kamiński, J. Lewandowski (2010) Gravity quantized, Phys. Rev. D 82, 104038
  14. R. Gambini, J. Pullin (2012) Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables, arXiv:1207.6028
  15. A. Ashtekar, P. Singh (2011) Loop Quantum Cosmology: A Status Report, Class. Quantum Grav. 28, 213001
  16. M. Bojowald (2008) Loop Quantum Cosmology, Living Rev. Relativity 11, 4
  17. A. Ashtekar, J. Lewandowski (2001) Relation between polymer and Fock excitations, Class. Quantum Grav. 18, L117
  18. A. Ashtekar, S. Fairhurst, J. Willis (2002) Quantum gravity, shadow states, and quantum mechanics, Class. Quantum Grav. 20, 1031
  19. K. Fredenhagen, F. Reszewski (2006) Polymer state approximations of Schroedinger wave functions, Class. Quantum Grav. 23, 6577
  20. A. Ashtekar, T. Paw lowski, P. Singh (2006) Quantum Nature of the Big Bang: Improved dynamics, Phys. Rev. D 74, 084003
  21. W. Kamiński, J. Lewandowski (2008) The flat FRW model in LQC: the self-adjointness, Class. Quantum Grav. 25, 035001
  22. A. Ashtekar, M. Bojowald, J. Lewandowski (2003) Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys. 7, 233
  23. K. Giesel, H. Sahlmann (2012) From Classical to Quantum Gravity: Introduction to Loop Quantum Gravity, Proceedings of the 3rd Quantum Geometry and Quantum Gravity School in Zakopane, arXiv:1203.2733
  24. J. Lewandowski, D. Marolf (1998) Loop constraints: A habitat and their algebra, Int. J. Mod. Phys. D7, 299