Academia.eduAcademia.edu

Outline

A phase space analysis for nonlinear bulk viscous cosmology

2015

Abstract

We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity which is proportional to an arbitrary power of the energy density, i.e. ζ ∝ ρ ν v , and viscous pressure satisfying a nonlinear evolution equation. The analysis is carried out in the context of dynamical systems and the properties of solutions corresponding to the fixed points are discussed. For some ranges of the relevant parameter ν we find that the trajectories in the phase space evolve from a FRW singularity towards an asymptotic de Sitter attractor, confirming and extending previous analysis in the literature. For other values of the parameter, instead, the behaviour differs from previous works.

References (18)

  1. C. Eckart, Phys. Rev. 58, 919 (1940).
  2. W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
  3. R. Geroch and L. Lindblom Phys. Rev. D 41, 1855 (1990).
  4. B. Cater, Proc. R. Soc. A 433, 45 (1991).
  5. J. D. Barrow, Phys. Lett. B 180, 335 (1986).
  6. J. D. Barrow, Nucl. Phys. 310, 743 (1988).
  7. T. Padmanabhan and S. M. Chitre, Phys. Lett. A 120, 433 (1987).
  8. J. D. Barrow, The Formation and Evolution of Cosmic Strings, edited by G.W. Gibbons, S.W. Hawking, and T. Vachaspati (Cambridge University Press, Cambridge, England, 1990), p. 449.
  9. R. Maartens, Classical Quantum Gravity 12, 1455 (1995).
  10. J. C. Fabris, S. V. B. Gonçalves, and R. de Sá Ribeiro, Gen. Relativ. Gravit., 38 495 (2006).
  11. R. Colistete, J. Fabris, J. Tossa, and W. Zimdahl, Phys. Rev. D 76, 103516 (2007).
  12. O. F. Piattella, J. C. Fabris, and W. Zimdahl, J. Cosmol. Astropart. Phys. 11 (2011) 029.
  13. I. Brevik, E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 84, 103508 (2011).
  14. A. Avelino, R. Garcia-Salcedo, T. Gonzalez, U. Nucamendi, and I. Quiros, J. Cosmol. As- tropart. Phys. 13 (2013) 012.
  15. R. Maartens and V. Méndez, Phys. Rev. D 55, 4 (1997).
  16. L. P. Chimento, A. S. Jakubi, V. Méndez, and R. Maartens, Classical Quantum Gravity 14, 3363 (1997).
  17. G. Acquaviva and A. Beesham, Phys. Rev. D 90, 023503 (2014).
  18. S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005).