Reconstruction d'ensembles compacts 3D
2009
Abstract
Reconstruire un modèleà partir d'échantillons est un problème central se posant en médecine numérique, en ingénierie inverse, en sciences naturelles, etc. Ces applications ont motivé une recherche substantielle pour la reconstruction de surfaces, la question de la reconstruction de modèles plus généraux n'ayant paś eté examinée. Ce travail présente an algorithme visantà changer le paradigme de reconstruction en 3D comme suit. Premièrement, l'algorithme reconstruit des formes générales-des ensembles compacts et non plus des surfaces. Sous des hypothèses appropriées, nous montrons que la reconstruction a le type d'homotopie de l'objet de départ. Deuxièmement, l'algorithme ne génère pas une seule reconstruction, mais un ensemble de reconstructions plausibles. Troisièmement, l'algorithme peutêtre coupléà la persistance topologique, afin de sélectionner les traits les plus stables du modèle reconstruit. Enfin, en cas d'échec de la reconstruction, la méthode permet une identification aisée des régions sous-echantillonnées, afinéventuellement de les enrichir. Ces points clefs sont illustrés sur des modèles difficiles, et devraient permettre de mieux tirer parti de leurs caractéristiques dans les application sus-citées.
Key takeaways
AI
AI
- The algorithm reconstructs general 3D compact sets, not just smooth surfaces, enhancing flexibility.
- It generates multiple plausible reconstructions, addressing the ambiguity in point cloud data.
- The algorithm integrates topological persistence to prioritize stable features in reconstructions.
- Reconstruction operates effectively on challenging datasets, including non-manifold shapes like intersecting hemi-spheres.
- Key experiments involve models with 3,000 to 20,956 points, demonstrating practical efficiency and robustness.
References (29)
- N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom., 22(4):481-504, 1999.
- ABCO + 01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva. Point set surfaces. In IEEE, editor, Visualization, 2001.
- N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeomorphic surface reconstruction. In Proc. 16th Annu. Sympos. Comput. Geom., pages 213-222, 2000.
- J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comp. Geometry Theory and Applications, 22(1):185-203, 2002. Conf. version: ACM Sympos. Comput. Geom.'00.
- J-D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM Trans. Graph., 3(4):266-286, 1984.
- CBC + 01] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, T. Fright, B. McCallum, and T. Evans. Reconstruction and representation of 3d objects with radial basis functions. In Siggraph. ACM, 2001.
- F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compacts in Euclidean spaces. In ACM Symp. Comp. Geometry, pages 319-326, 2006.
- CDA + 08] J.-C. Chambelland, M. Dassot, B. Adam, N. Donès, P. Balandier, A. Marquier, M. Saudreau, G. Sonohat, and H. Sinoquet. A double-digitising method for building 3d virtual trees with non- planar leaves: application to the morphology and light-capture properties of young beech trees (fagus sylvatica). Functional Plant Biology, 35(9 & 10):1059-1069, Novembre 2008.
- F. Cazals and J. Giesen. Delaunay triangulation based surface reconstruction. In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational Geometry for curves and surfaces. Springer- Verlag, Mathematics and Visualization, 2006.
- R. Chaine. A convection geometric-based approach to surface reconstruction. In Symp. Geometry Processing, pages 218-229, 2003.
- F. Cazals, A. Parameswaran, and S. Pion. Robust construction of the three-dimensional flow complex. In ACM Symposium on Computational Geometry, pages 182-191, 2008.
- D. Cohen-Steiner and F. Da. A greedy delaunay based surface reconstruction algorithm. The Visual Computer, 20(1):4-16, 2004.
- T. Dey, J. Giesen, and M. John. Alpha-shapes and flow shapes are homotopy equivalent. In ACM Symposium on Theory of Computing, pages 493--501, 2003.
- T.K. Dey, J. Giesen, E. Ramos, and B. Sadri. Critical points of the distance to an epsilon-sampling of a surface and flow based surface reconstruction. Int'l Journal of Computational Geometry and Applications, 18:29-61, 2008.
- H. Edelsbrunner. The union of balls and its dual shape. Discrete & Computational Geometry, 13:415-440, 1995.
- H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space. Discrete and Computational Geometry, 32:231-244, 2004.
- H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28:511-533, 2002.
- H. Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):418- 491, 1959.
- S. Goswami, T. K. Dey, and C. Bajaj. Identifying flat and tubular regions of a shape by unstable manifolds. In ACM Solid and Physical Modeling, 2006.
- J. Giesen and M. John. Surface reconstruction based on a dynamical system. In Proceedings of the 23rd Annual Conference of the European Association for Computer Graphics (Eurographics), Computer Graphics Forum 21, pages 363-371, 2002.
- J. Giesen and M. John. The flow complex: A data structure for geometric modeling. In ACM SODA, 2003.
- J. Giesen, E. Ramos, and B. Sadri. Medial axis approximation and unstable manifolds. In ACM SoCG, 2006.
- T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology. Springer, 2004.
- A. Lieutier. Any open bounded subset of R n has the same homotopy type than its medial axis. Computer-Aided Design, 36(11):1029-1046, 2004.
- P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419-441, 2008.
- J. Palis and W. de Melo. Geometric Theory of Dynamical Systems. Springer, 1982.
- H. K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set method. In Proceedings of IEEE Workshop on Variational and Level Set Methods in Computer Vision (VLSM), 2001. Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex (France) Unité de recherche INRIA Futurs : Parc Club Orsay Université -ZAC des Vignes 4, rue Jacques Monod -91893 ORSAY Cedex (France)
- Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France)
- Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt : Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Éditeur INRIA -Domaine de Voluceau -Rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) ❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r ISSN 0249-6399