Academia.eduAcademia.edu

Outline

Studies in growth patterns and fractals

2007

Abstract
sparkles

AI

The study explores the scaling behavior of complex phenomena in nature through the lens of fractal geometry, highlighting its applications across diverse fields such as physics, biology, and economics. It presents a detailed analysis of various growth processes, particularly focusing on the fractal dimensions associated with electrodeposition and the simulation of diffusion-limited aggregation (DLA) to understand mass distribution. Employing techniques such as the Rescaled Range Analysis, the study also examines time series data, including natural events and market fluctuations, illustrating the intricate interplay between fractal behavior and real-world phenomena.

References (26)

  1. Viscek Tamas, 'Fractal Growth Phenomena', world scientific publishing co.Singapore (1992).
  2. Fonti Pallikari, Emil Bollera, 'A Rescaled Range Analysis of Random Events', J. of Scientific Exploration, 13, 1, 25(1999).
  3. Pimply J.M., Phys Today 50, 42 (1997).
  4. Harold M.H., Sugihra G., 'Fractals: A User's Guide for the Natural Sciences', Oxford University, New York. (1993).
  5. Berger, Nature 323, 609 (1986).
  6. Mittal A.K. and Seshadri T. R., 'Resonance: journal of Science Education', 7, 2 (2002).
  7. Falconer K., 'Fractal geometry: Mathematical foundations and Applications', Wiley and Sons, New York (1990).
  8. Milne B.T., 'Measuring the fractal geometry of landscapes', Appl.Math. Chapman and Hall, London (1988).
  9. Mandelbrot B.B., 'The Fractal geometry of nature'Freeman ,San Francisco (1982).
  10. Voss R.F., 'Fractal In Nature: from Characterization to Simulation', Peitgen H.O. and Saupe D. (eds.). 'The science of fractal images',Springer New York. (1988).
  11. Zmeskal O., Michal V., Nezadal M., Buchnicek M., 'Fractal Analysis of Image structures', HarFA e-journal, http://www.fch.vutbr.cz/lectures/imagesci/harfa.htm3,(2001).
  12. Sarkar N. and Chaudhuri B.B.,'An efficient approach to eastimate Fractal Dimension of textural images', Pattern Recog.25, 1035(1992).
  13. Ingle Pradnya, Shaikh Yusuf, Aruna Patil, Abdul Rauff Khan, 'Selfsimilarity pattern obtained in Asparagus Plumosus', Proc. of 93rd Indian Science congress part -III 84, 59Hyderabad (2006).
  14. Marry Ann Connors, 'Exploring Fractals', Dept. of Mathematics and statistic's University of Massachusctts Amherst,Boston (1994).
  15. Sander Leonard. M, 'Fractal Growth', Scientific American, 94(1987).
  16. Amritkar R.E., 'Fractal and growth Process'Ind. J. of Pure and Applied Physics 32, 595(1994).
  17. Raband Y.,Couder and Gerard N.,Phy Rev A, 37, 935 (1988).
  18. Witten T.A.,and Sander L. M., 'Fractals and chaos in fractals', Phys .Rev. Letts. 47, 1400 (1981).
  19. Ph.D. Thesis of title 'Studies in fractal and diffusion limited phenomena'by Chisty S.Q. Submitted to Dr. B.A.M. University Aurangabad (2002).
  20. Roy A., Roy S., Eur. phy. J. B12, 1(1999).
  21. National Semiconductor Corporation (2001), America Email: support@nsc.com -http://www.national.co
  22. Argoul F., Huth J., Merzeau P., Arneodo A. and Harry L.. Swinney, 'Experimental evidence for homoclinic chaos in an electrochemical growth process'physica D 61, 170 (1993).
  23. Sander L. M., 'Diffusion-limited aggregation: a kinetic critical phenomenon' Contemporary Physics, 41, 4,203 (2000).
  24. Shaikh Yusuf H., Ingle P.K., Patil A.G., Khan A.R., Patil S.S., Behere S.H., 'Rescale Range Analysis of Fluctuating Weather parameters' Proc. of 93 rd Indian Science congress part -III 81, 56 Hyderabad (2006).
  25. Kurnaz M. L., 'Application of Detrended Fluctuation Analysis to Monthly Average of the maximum daily temperatures to resolve different climates' Fractals, 12, 4, 365 (World Scientific Publishing Company)(2004).
  26. Razdan Ashok, 'Bombay Stock Exchange Index' Pramana -J. of physics 58, 3,537(2002).