Academia.eduAcademia.edu

Outline

Theoretical concepts fpr fractal growth

1989, Physica D: Nonlinear Phenomena

https://doi.org/10.1016/0167-2789(89)90206-6

Abstract

After the introduction of flactal geometry by Benoit Mandelbrot the ke~ probl*.m is to understand why nature gt~es nsc to fraetal structures. This tmplies the formulation of models of fractal growth based on physical phenomena and the subseq'-m understanding of their mathematical structure in the ~me sense as the renormalization group has allowed to ,,nderstand ,,ngtype models. The models of diffusion-limited aggregatton and the more general dtelecttac breakdown model, based on t,,ranve processes governed by the Laplace equation and a stochastic field, have a clear phystcal meanmg and the~ spontaneously evobe into random fractal structures of gt~at complexity. From a theoretical point of view however it is not possible to describe them within usual concepts. Recently we have introduced a new theo,etical framework for this class of problems. This clarifies the origin of fractal structures in these models and provides a systematic m,'thod for the calculation of the fractai dtmension and the multifractal properties. Here ~,e summarize the basic ideas of this new approach and report about recent developments.

References (18)

  1. I I M.V. Ber~. Net Sol (27 Jan. Iq~31. [2IB.B. Mandelbrot, The Fractal Geomct~ ( Freeman. San Francisco. IO83 I. 131 of Nature P.J.E. Peebles. The La~c Scale Slructurc Of the t Int*,erse ( Princeton Linty. Press. Princeton. I gSO).
  2. M Da~ is and P J.E. Pecbles, Astroph)*. J 2tC ~ 1983 ) J65
  3. S. Wemberg. Gravtiat,un and Cosmolog~ ( Wile~. Nc~ ~ ork. IO72)
  4. L. Ptetronero. Ph.~stca -% 144 q Io871 257 P.H. Coleman. 1. Ptelronere and R H Sander,, -Xslror~ .%stroph.~s 200(IQSS| I 32
  5. i6iL Plelronero and E ~LiSJLLI. L'd", . FI...lt.i.ll~ LIL ~-=l* )l~h'-" I NorlbiHolh, nd. ~m.lerd:,m IO.~.~
  6. H E Slanl¢.~ and N. O,,Irov, sk) ~.'d~, I.en C.ro~..lh arid Form ( NI hof". Dordrechl. IOSO I
  7. L Pietro,lero. A Erzan and C [xerl~.. Ph)5 Re~ Leli ~1 I I g~ ) .~o I. [8iL. Pletronero..%. E'zan and C. E~ensz. Ph.~s,ca ~, 151 ( 19881 207
  8. D.J. Amit, Field Theory, the Renormalizalion Group and Critical Phenomena ( McGraw-Hill. New York, 1978 ).
  9. 101L.P. Kadanoff, Phys. Today (Feb. 1986) 6.
  10. I I I T A. Witlen and L.M. Sander. Phys. Rev. Left 47 ( 1981 ) L400.
  11. L. Niemeyer. L. Pietronero and ,~ j. Wnesmann, Phys. Rev. Lett. 52 (1984) 1033: L. Pletronero and H.~. W:¢smann. J. Star. Phys. 36 ( 1984 ) 909.
  12. H.E. Stanley, Phil. Mag. B 56 (1987) 665
  13. C Everlsz, Laplacian Fractals, Thesis, Uni~ersit), of Groningen (1989). unpublished.
  14. G. Paladin and A. Vulpiani, Phys. Rcp. 156 ! 1987 ) 147.
  15. A.P. Slebesma, R.R. Trembla), A. Erzan an~ L. Pletronero, Physica A 156 (1989) 613.
  16. A.P. Siebesraa and R.R. Tremblay, Phys. Rev. B. in press.
  17. A. Vesplgnam and L. Pietronero, to be published.
  18. M. Marsili and L. Pietmnero. to be published.