Prospective Life Cycle Assessment of a Model Magnesium Battery
2021, Energy Technology
https://doi.org/10.1002/ENTE.202000964Abstract
Energy-storage systems are considered as a key technology for energy and mobility transition. Because traditional batteries have many drawbacks, there are tremendous efforts to develop so-called postlithium systems. The magnesium-sulfur (MgS) battery emerges as one alternative. Previous studies of Mg-S batteries have addressed the environmental footprint of its production. However, the potential impacts of the use-phase are not considered yet, due to its premature stage of development. Herein, a first prospective look at the potential environmental performance of a theoretical Mg-S battery for different use-phase applications is given to fill this gap. By means of the life cycle assessment (LCA) methodology, an analysis of different scenarios and a comparison with other well-established technologies are conducted. The results suggest that the environmental footprint of the Mg-S is comparable with that of the commercially available counterparts and potentially outperforms them in several impact categories. However, this can only be achieved if a series of technical challenges are first overcome.
References (37)
- J. Zhang, C. Chen, X. Zhang, S. Liu, Procedia Environ. Sci. 2016, 31, 873.
- J. Sutanto, Environmental Study of Lead Acid Batteries Technologies, https://www.grin.com/document/179643 (accessed: October 2020).
- A. Shanika, S. Jay, S. Brian, Application of Life Cycle Assessment to Nanoscale Technology: Lithium-Ion Batteries for Electric Vehicles, Tech. Rep. EPA 744-R-12-001, United States Environmental Protection Agency, Washington, DC, USA 2013.
- D. Agusdinata, W. Liu, H. Eakin, H. Romero, Environ. Res. Lett. 2018, 13, 123001.
- H. E. Melin, Analysis of the Climate Impact of Lithium-ion Batteries and How to Measure it, Circular Energy Storage Research and Consulting, London 2019.
- A. Leader, G. Gaustad, C. Babbitt, Mater. Renew. Sustain. Energy 2019, 8, 8.
- M. Mohr, J. Peters, M. Baumann, M. Weil, J. Ind. Ecol. 2020, 24, 1310.
- J. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 1601.
- B. L. Ellis, L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 2012, 16, 168.
- D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, J. Power Source 2001, 97, 28.
- M. Fichtner, in Magnesium Batteries: Research and Applications, Royal Society of Chemistry, Cambridge, UK 2019.
- N. Wagner, M. Fichtner, H. G. Bremes, C. Wolter, I. Zwanziger, J. Remmlinger, Entwicklung und Herstellung von Wiederaufladbaren Magnesium-Schwefel Batterien "MagS", 2019, https://doi.org/10. 2314/KXP:1680881833 (German).
- C. T. Montenegro, J. Peters, Z. Zhao-Karger, C. Wolter, M. Weil, in Magnesium Batteries: Research and Applications, Royal Society of Chemistry, Cambridge, UK 2019.
- C. T. Montenegro, J. Peters, M. Baumann, Z. Zhao-Karger, C. Wolter, M. Weil, J. Energy Storage, Unpublished.
- M. Baumann, J. Peters, M. Weil, Energy Technol. 2019, 8, 1901019.
- P. Wang, M. Buchmeiser, Adv. Funct. Mater. 2019, 29, 1905248.
- J. Häcker, C. Danner, B. Sievert, I. Biswas, Z. Zhao-Karger, N. Wagner, K. A. Friedrich, Electrochim. Acta 2020, 338, 135787.
- P. Wang, J. Kappler, J. Häcker, K. Küster, B. Sievert, I. Biswas, U. Starke, F. Ziegler, M. R. Buchmeiser, Electrochim. Acta 2020, 361, 137024.
- B. Lee, J. Choi, N. Subin, D. J. Yoo, J. Kim, B. W. Cho, Y. Kim, T. Yim, J. Choi, S. H. Oh, Appl. Surf. Sci. 2019, 484, 933.
- ISO, Environmental Management: Life Cycle Assessment -Principles and Framework, ISO 14040, British Standards Institution, London 2006.
- ISO, Environmental Management: Life Cycle Assessment -Requirements and Guidelines, ISO 14044, British Standards Institution, London 2006.
- Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. B. Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, ACS Energy Lett. 2018, 3, 2005.
- Z. Zhao-Karger, M. Fichtner, Front. Chem. 2019, 6, 656.
- L. A. W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen, A. H. Strømman, J. Ind. Ecol. 2014, 18, 113.
- M. Baumann, J. F. Peters, M. Weil, A. Grunwald, Energy Technol. 2017, 5, 1071.
- M. Hiremath, K. Derendorf, T. Vogt, Environ. Sci. Technol. 2015, 49, 4825.
- Y. Deng, J. Li, T. Li, X. Gao, C. Yuan, J. Power Sources 2017, 343, 284.
- M. Zackrisson, K. Fransson, J. Hildenbrand, G. Lampic, C. O'Dwyer, J. Cleaner Prod. 2016, 135, 299.
- G. Majeau-Bettez, T. R. Hawkins, A. H. Strømman, Environ. Sci. Technol. 2011, 45, 4548.
- Agora Energiewende, Die Energiewende im Stromsektor: Stand der Dinge 2019: Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2020, Agora Energiewende, Berlin 2020.
- R. Frischknecht, R. Itten, P. Sinha, M. de Wild-Scholten, J. Zhang, V. Fthenakis, H. C. Kim, M. Raugei, M. Stucki, Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, PVPS Task 12, Report T12-04:2015, International Energy Agency (IEA), Paris 2015.
- M. A. Huijbregts, Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, R. van Zelm, Int. J. Life Cycle Assess. 2017, 22, 138.
- L. Van Oers, J. B. Guinée, R. Heijungs, Int. J. Life Cycle Assess. 2020, 25, 294.
- S. Weber, J. Peters, M. Baumann, M. Weil, Environ. Sci. Technol. 2018, 52, 10864.
- European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative, European Commission, Brussels 2014.
- F. Rossi, M. Parisi, S. Greven, R. Basosi, A. Sinicropi, Energies 2020, 13, 3454.
- V. B. Parambath, Z. Zhao-Karger, T. Diemant, M. Jäckle, Z. Li, T. Scherer, A. Gross, R. J. Behmacand, M. Fichtner, J. Mater. Chem. A 2020, 8, 22998.