Academia.eduAcademia.edu

Outline

Prospective Life Cycle Assessment of a Model Magnesium Battery

2021, Energy Technology

https://doi.org/10.1002/ENTE.202000964

Abstract

Energy-storage systems are considered as a key technology for energy and mobility transition. Because traditional batteries have many drawbacks, there are tremendous efforts to develop so-called postlithium systems. The magnesium-sulfur (MgS) battery emerges as one alternative. Previous studies of Mg-S batteries have addressed the environmental footprint of its production. However, the potential impacts of the use-phase are not considered yet, due to its premature stage of development. Herein, a first prospective look at the potential environmental performance of a theoretical Mg-S battery for different use-phase applications is given to fill this gap. By means of the life cycle assessment (LCA) methodology, an analysis of different scenarios and a comparison with other well-established technologies are conducted. The results suggest that the environmental footprint of the Mg-S is comparable with that of the commercially available counterparts and potentially outperforms them in several impact categories. However, this can only be achieved if a series of technical challenges are first overcome.

References (37)

  1. J. Zhang, C. Chen, X. Zhang, S. Liu, Procedia Environ. Sci. 2016, 31, 873.
  2. J. Sutanto, Environmental Study of Lead Acid Batteries Technologies, https://www.grin.com/document/179643 (accessed: October 2020).
  3. A. Shanika, S. Jay, S. Brian, Application of Life Cycle Assessment to Nanoscale Technology: Lithium-Ion Batteries for Electric Vehicles, Tech. Rep. EPA 744-R-12-001, United States Environmental Protection Agency, Washington, DC, USA 2013.
  4. D. Agusdinata, W. Liu, H. Eakin, H. Romero, Environ. Res. Lett. 2018, 13, 123001.
  5. H. E. Melin, Analysis of the Climate Impact of Lithium-ion Batteries and How to Measure it, Circular Energy Storage Research and Consulting, London 2019.
  6. A. Leader, G. Gaustad, C. Babbitt, Mater. Renew. Sustain. Energy 2019, 8, 8.
  7. M. Mohr, J. Peters, M. Baumann, M. Weil, J. Ind. Ecol. 2020, 24, 1310.
  8. J. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 1601.
  9. B. L. Ellis, L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 2012, 16, 168.
  10. D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, J. Power Source 2001, 97, 28.
  11. M. Fichtner, in Magnesium Batteries: Research and Applications, Royal Society of Chemistry, Cambridge, UK 2019.
  12. N. Wagner, M. Fichtner, H. G. Bremes, C. Wolter, I. Zwanziger, J. Remmlinger, Entwicklung und Herstellung von Wiederaufladbaren Magnesium-Schwefel Batterien "MagS", 2019, https://doi.org/10. 2314/KXP:1680881833 (German).
  13. C. T. Montenegro, J. Peters, Z. Zhao-Karger, C. Wolter, M. Weil, in Magnesium Batteries: Research and Applications, Royal Society of Chemistry, Cambridge, UK 2019.
  14. C. T. Montenegro, J. Peters, M. Baumann, Z. Zhao-Karger, C. Wolter, M. Weil, J. Energy Storage, Unpublished.
  15. M. Baumann, J. Peters, M. Weil, Energy Technol. 2019, 8, 1901019.
  16. P. Wang, M. Buchmeiser, Adv. Funct. Mater. 2019, 29, 1905248.
  17. J. Häcker, C. Danner, B. Sievert, I. Biswas, Z. Zhao-Karger, N. Wagner, K. A. Friedrich, Electrochim. Acta 2020, 338, 135787.
  18. P. Wang, J. Kappler, J. Häcker, K. Küster, B. Sievert, I. Biswas, U. Starke, F. Ziegler, M. R. Buchmeiser, Electrochim. Acta 2020, 361, 137024.
  19. B. Lee, J. Choi, N. Subin, D. J. Yoo, J. Kim, B. W. Cho, Y. Kim, T. Yim, J. Choi, S. H. Oh, Appl. Surf. Sci. 2019, 484, 933.
  20. ISO, Environmental Management: Life Cycle Assessment -Principles and Framework, ISO 14040, British Standards Institution, London 2006.
  21. ISO, Environmental Management: Life Cycle Assessment -Requirements and Guidelines, ISO 14044, British Standards Institution, London 2006.
  22. Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. B. Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, ACS Energy Lett. 2018, 3, 2005.
  23. Z. Zhao-Karger, M. Fichtner, Front. Chem. 2019, 6, 656.
  24. L. A. W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen, A. H. Strømman, J. Ind. Ecol. 2014, 18, 113.
  25. M. Baumann, J. F. Peters, M. Weil, A. Grunwald, Energy Technol. 2017, 5, 1071.
  26. M. Hiremath, K. Derendorf, T. Vogt, Environ. Sci. Technol. 2015, 49, 4825.
  27. Y. Deng, J. Li, T. Li, X. Gao, C. Yuan, J. Power Sources 2017, 343, 284.
  28. M. Zackrisson, K. Fransson, J. Hildenbrand, G. Lampic, C. O'Dwyer, J. Cleaner Prod. 2016, 135, 299.
  29. G. Majeau-Bettez, T. R. Hawkins, A. H. Strømman, Environ. Sci. Technol. 2011, 45, 4548.
  30. Agora Energiewende, Die Energiewende im Stromsektor: Stand der Dinge 2019: Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2020, Agora Energiewende, Berlin 2020.
  31. R. Frischknecht, R. Itten, P. Sinha, M. de Wild-Scholten, J. Zhang, V. Fthenakis, H. C. Kim, M. Raugei, M. Stucki, Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, PVPS Task 12, Report T12-04:2015, International Energy Agency (IEA), Paris 2015.
  32. M. A. Huijbregts, Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, R. van Zelm, Int. J. Life Cycle Assess. 2017, 22, 138.
  33. L. Van Oers, J. B. Guinée, R. Heijungs, Int. J. Life Cycle Assess. 2020, 25, 294.
  34. S. Weber, J. Peters, M. Baumann, M. Weil, Environ. Sci. Technol. 2018, 52, 10864.
  35. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative, European Commission, Brussels 2014.
  36. F. Rossi, M. Parisi, S. Greven, R. Basosi, A. Sinicropi, Energies 2020, 13, 3454.
  37. V. B. Parambath, Z. Zhao-Karger, T. Diemant, M. Jäckle, Z. Li, T. Scherer, A. Gross, R. J. Behmacand, M. Fichtner, J. Mater. Chem. A 2020, 8, 22998.