Progress in Rechargeable Magnesium Battery Technology
2007, Advanced Materials
https://doi.org/10.1002/ADMA.200701495Abstract
Rechargeable magnesium batteries were first presented about seven years ago. Their components included magnesium metal or a Mg alloy anode, Mg x Mo 6 S 8 (0 < x < 2) Chevrel phase cathodes, and electrolyte solutions that contained an ether solvent and a complex electrolyte, a product of the reaction between a MgBu 2 Lewis base and an AlCl 2 Et Lewis acid (Bu = butyl, Et = ethyl). These systems, while demonstrating impressive cycleability, suffered from several drawbacks: i) The micrometric size Mg 0-2 Mo 6 S 8 Chevrel phase cathode suffers from some kinetic limitation and the phenomenon of partial charge trapping (of Mg ions) at low temperatures. ii) The electrochemical window of the first generation of electrolyte solutions, THF/Mg(AlCl 2 BuEt) 2 was around 2.2 V, which limited the possible use of cathode materials with a higher redox potential (and higher capacity) than Chevrel phases. iii) For practical use, the synthesis of the components of rechargeable Mg batteries needs simplification.
References (22)
- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, C. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724.
- O. Chusid, Y. Gofer, H. Gizbar, Y. Vestfrid, E. Levi, D. Aurbach, Adv. Mater. 2003, 15, 627.
- D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 2003, 3, 61.
- E. Lancry, E. Levi, Y. Gofer, M. D. Levi, G. Salitra, D. Aurbach, Chem. Mater. 2004, 16, 2832.
- M. D. Levi, H. Gizbar, E. lancry, Y. Gofer, E. Levi, D. Aurbach, J. Electroanal. Chem. 2004, 569, 211.
- Topics in Current Physics: Superconductivity in Ternary Compounds I (Eds: Ø. Fisher, M. B. Maple), Springer, Berlin 1982.
- K. Yvon, in Current Topics in Material Science, Vol. 3 (Ed: E. Kal- dis), Elsevier, North-Holland, Amsterdam 1979.
- R. W. Nunes, I. Mazin, D. J. Sigh, Phys. Rev. B 1999, 59, 7969.
- W. Benson, G. L. Schrader, R. J. Angelici, J. Mol. Catal. A 1995, 96, 283.
- E. Levi, E. lancry, A. Mitelman, D. Aurbach, G. Ceder, D. Morgan, O. Isnard, Chem. Mater. 2006, 18, 5492.
- E. Levi, E. lancry, A. Mitelman, D. Aurbach, O. Isnard, D. Jurado, Chem. Mater. 2006, 18, 3705.
- D. C. Jonson, J. M. Tarascon, M. Sienko, J. Inorg. Chem. 1983, 22, 3773.
- D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, J. Power Sources 2007, 165, 491.
- H. Gizbar, Y. Vestfrid, O. Chusid, Y. Gofer, H. E. Gottlieb, V. Marks, D. Aurbach, Organometallics 2004, 23, 3826.
- L. S. Selwyn, W. R. McKinnon, J. R. Dahn, Y. Le Page, Phys. Rev. B 1986, 33, 6405.
- L. S. Selwyn, W. R. McKinnon, Y. Le Page, Phys. Rev. B 1990, 42, 10427.
- S. Belin, R. Chevrel, M. Sergent, J. Solid State Chem. 1999, 145, 159.
- M. D. Levi, E. lancry, H. Gizbar, Z. Lu, E. Levi, Y. Gofer, D. Aur- bach, J. Electrochem. Soc. 2004, 151, A1044.
- D. Aurbach, O. Chusid, Y. Vestfried, Y. Gofer, N. Amir, J. Power Sources, in press.
- Y. Vestfried, O. Chusid, Y. Gofer, D. Aurbach, Organometallics 2007, 26, 3130.
- J. R. Carvajal, Phys. B 1993, 192, 55.
- L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer, P. Scardi, J. Appl. Crystallogr. 1999, 32, 36.