Academia.eduAcademia.edu

Outline

Search for supernova bursts in Super-Kamiokande IV

2022, Cornell University - arXiv

https://doi.org/10.48550/ARXIV.2206.01380

Abstract

Super-Kamiokande has been searching for neutrino bursts characteristic of core-collapse supernovae continuously, in real time, since the start of operations in 1996. The present work focuses on detecting more distant supernovae whose event rate may be too small to trigger in real time, but may be identified using an offline approach. The analysis of data collected from 2008 to 2018 found no evidence of distant supernovae bursts. This establishes an upper limit of 0.29 year −1 on the rate of core-collapse supernovae out to 100 kpc at 90% C.L.. For supernovae that fail to explode and collapse directly to black holes the limit reaches to 300 kpc.

References (35)

  1. Abe, K., et al. 2016a, Astropart. Phys., 81, 39, doi: 10.1016/j.astropartphys.2016.04.003
  2. -. 2016b, Phys. Rev. D, 94, 052010, doi: 10.1103/PhysRevD.94.052010
  3. -. 2022, Nucl. Instrum. Meth. A, 1027, 166248, doi: 10.1016/j.nima.2021.166248
  4. Aglietta, M., Badino, G., Bologna, G., et al. 1988, Nuclear Physics B -Proceedings Supplements, 3, 453, doi: https://doi.org/10.1016/0920-5632(88)90196-X
  5. Aharmim, B., Ahmed, S. N., Anthony, A. E., et al. 2011, The Astrophysical Journal, 728, 83, doi: 10.1088/0004-637x/728/2/83
  6. Alexeyev, E., Alexeyeva, L., Krivosheina, I., & Volchenko, V. 1988, Physics Letters B, 205, 209, doi: https://doi.org/10.1016/0370-2693(88)91651-6
  7. Ambrosio, M., et al. 1998, Astropart. Phys., 8, 123, doi: 10.1016/S0927-6505(97)00032-7
  8. Ando, S., Beacom, J. F., & Yüksel, H. 2005, Phys. Rev. Lett., 95, 171101, doi: 10.1103/PhysRevLett.95.171101
  9. Asakura, K., et al. 2016, Astrophys. J., 818, 91, doi: 10.3847/0004-637X/818/1/91
  10. Bionta, R. M., Blewitt, G., Bratton, C. B., et al. 1987, Phys. Rev. Lett., 58, 1494, doi: 10.1103/PhysRevLett.58.1494
  11. Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin, Heidelberg: Springer-Verlag)
  12. Bruno, G., Molinario, A., Fulgione, W., & Vigorito, C. 2017, J. Phys. Conf. Ser., 888, 012256, doi: 10.1088/1742-6596/888/1/012256
  13. Cravens, J., et al. 2008, Phys. Rev. D, 78, 032002, doi: 10.1103/PhysRevD.78.032002
  14. Dighe, A. S., & Smirnov, A. Y. 2000, Phys. Rev. D, 62, 033007, doi: 10.1103/PhysRevD.62.033007
  15. Fukuda, Y., et al. 2003, Nucl. Instrum. Meth. A, 501, 418, doi: 10.1016/S0168-9002(03)00425-X
  16. Hirata, K., Kajita, T., Koshiba, M., et al. 1987, Phys. Rev. Lett., 58, 1490, doi: 10.1103/PhysRevLett.58.1490
  17. Hosaka, J., et al. 2006, Phys. Rev. D, 73, 112001, doi: 10.1103/PhysRevD.73.112001
  18. Ikeda, M., et al. 2007, Astrophys. J., 669, 519, doi: 10.1086/521547
  19. Köpke, L. 2018, J. Phys. Conf. Ser., 1029, 012001, doi: 10.1088/1742-6596/1029/1/012001
  20. Li, S. W., & Beacom, J. F. 2014, Phys. Rev. C, 89, 045801, doi: 10.1103/PhysRevC.89.045801
  21. -. 2015, Phys. Rev. D, 92, 105033, doi: 10.1103/PhysRevD.92.105033
  22. Monzani, M. E. 2006, Nuovo Cim. C, 29, 269, doi: 10.1393/ncc/i2005-10230-2
  23. Mori, M., Suwa, Y., Nakazato, K., et al. 2020, Progress of Theoretical and Experimental Physics, 2021, doi: 10.1093/ptep/ptaa185
  24. Nakahata, M., Fukuda, Y., Hayakawa, T., et al. 1999, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 421, 113, doi: https://doi.org/10.1016/S0168-9002(98)01200-5
  25. Nakazato, K., Sumiyoshi, K., Suzuki, H., et al. 2013, Astrophys. J. Suppl., 205, 2, doi: 10.1088/0067-0049/205/1/2
  26. Nishino, H., Awai, K., Hayato, Y., et al. 2009, Nucl. Instrum. Meth. A, 610, 710, doi: 10.1016/j.nima.2009.09.026
  27. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825. http://jmlr.org/papers/v12/pedregosa11a.html
  28. Rozwadowska, K., Vissani, F., & Cappellaro, E. 2021, New Astron., 83, 101498, doi: 10.1016/j.newast.2020.101498
  29. Sato, K., & Suzuki, H. 1987, Phys. Rev. Lett., 58, 2722, doi: 10.1103/PhysRevLett.58.2722
  30. Totani, T., Sato, K., Dalhed, H. E., & Wilson, J. R. 1998, ApJ, 496, 216, doi: 10.1086/305364
  31. Vigorito, C. F., Bruno, G., Fulgione, W., & Molinario, A. 2020, PoS, ICRC2019, 1028, doi: 10.22323/1.358.1028
  32. Wright, W. P., Nagaraj, G., Kneller, J. P., Scholberg, K., & Seitenzahl, I. R. 2016, Physical Review D, 94, doi: 10.1103/physrevd.94.025026
  33. Yamada, S., Awai, K., Hayato, Y., et al. 2010, IEEE Transactions on Nuclear Science, 57, 428, doi: 10.1109/TNS.2009.2034854
  34. Zhang, Y., et al. 2016, Phys. Rev. D, 93, 012004, doi: 10.1103/PhysRevD.93.012004
  35. Zuber, K. 2015, Nucl. Part. Phys. Proc., 265-266, 233, doi: 10.1016/j.nuclphysbps.2015.06.059