Search for supernova bursts in Super-Kamiokande IV
2022, Cornell University - arXiv
https://doi.org/10.48550/ARXIV.2206.01380Abstract
Super-Kamiokande has been searching for neutrino bursts characteristic of core-collapse supernovae continuously, in real time, since the start of operations in 1996. The present work focuses on detecting more distant supernovae whose event rate may be too small to trigger in real time, but may be identified using an offline approach. The analysis of data collected from 2008 to 2018 found no evidence of distant supernovae bursts. This establishes an upper limit of 0.29 year −1 on the rate of core-collapse supernovae out to 100 kpc at 90% C.L.. For supernovae that fail to explode and collapse directly to black holes the limit reaches to 300 kpc.
References (35)
- Abe, K., et al. 2016a, Astropart. Phys., 81, 39, doi: 10.1016/j.astropartphys.2016.04.003
- -. 2016b, Phys. Rev. D, 94, 052010, doi: 10.1103/PhysRevD.94.052010
- -. 2022, Nucl. Instrum. Meth. A, 1027, 166248, doi: 10.1016/j.nima.2021.166248
- Aglietta, M., Badino, G., Bologna, G., et al. 1988, Nuclear Physics B -Proceedings Supplements, 3, 453, doi: https://doi.org/10.1016/0920-5632(88)90196-X
- Aharmim, B., Ahmed, S. N., Anthony, A. E., et al. 2011, The Astrophysical Journal, 728, 83, doi: 10.1088/0004-637x/728/2/83
- Alexeyev, E., Alexeyeva, L., Krivosheina, I., & Volchenko, V. 1988, Physics Letters B, 205, 209, doi: https://doi.org/10.1016/0370-2693(88)91651-6
- Ambrosio, M., et al. 1998, Astropart. Phys., 8, 123, doi: 10.1016/S0927-6505(97)00032-7
- Ando, S., Beacom, J. F., & Yüksel, H. 2005, Phys. Rev. Lett., 95, 171101, doi: 10.1103/PhysRevLett.95.171101
- Asakura, K., et al. 2016, Astrophys. J., 818, 91, doi: 10.3847/0004-637X/818/1/91
- Bionta, R. M., Blewitt, G., Bratton, C. B., et al. 1987, Phys. Rev. Lett., 58, 1494, doi: 10.1103/PhysRevLett.58.1494
- Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information Science and Statistics) (Berlin, Heidelberg: Springer-Verlag)
- Bruno, G., Molinario, A., Fulgione, W., & Vigorito, C. 2017, J. Phys. Conf. Ser., 888, 012256, doi: 10.1088/1742-6596/888/1/012256
- Cravens, J., et al. 2008, Phys. Rev. D, 78, 032002, doi: 10.1103/PhysRevD.78.032002
- Dighe, A. S., & Smirnov, A. Y. 2000, Phys. Rev. D, 62, 033007, doi: 10.1103/PhysRevD.62.033007
- Fukuda, Y., et al. 2003, Nucl. Instrum. Meth. A, 501, 418, doi: 10.1016/S0168-9002(03)00425-X
- Hirata, K., Kajita, T., Koshiba, M., et al. 1987, Phys. Rev. Lett., 58, 1490, doi: 10.1103/PhysRevLett.58.1490
- Hosaka, J., et al. 2006, Phys. Rev. D, 73, 112001, doi: 10.1103/PhysRevD.73.112001
- Ikeda, M., et al. 2007, Astrophys. J., 669, 519, doi: 10.1086/521547
- Köpke, L. 2018, J. Phys. Conf. Ser., 1029, 012001, doi: 10.1088/1742-6596/1029/1/012001
- Li, S. W., & Beacom, J. F. 2014, Phys. Rev. C, 89, 045801, doi: 10.1103/PhysRevC.89.045801
- -. 2015, Phys. Rev. D, 92, 105033, doi: 10.1103/PhysRevD.92.105033
- Monzani, M. E. 2006, Nuovo Cim. C, 29, 269, doi: 10.1393/ncc/i2005-10230-2
- Mori, M., Suwa, Y., Nakazato, K., et al. 2020, Progress of Theoretical and Experimental Physics, 2021, doi: 10.1093/ptep/ptaa185
- Nakahata, M., Fukuda, Y., Hayakawa, T., et al. 1999, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 421, 113, doi: https://doi.org/10.1016/S0168-9002(98)01200-5
- Nakazato, K., Sumiyoshi, K., Suzuki, H., et al. 2013, Astrophys. J. Suppl., 205, 2, doi: 10.1088/0067-0049/205/1/2
- Nishino, H., Awai, K., Hayato, Y., et al. 2009, Nucl. Instrum. Meth. A, 610, 710, doi: 10.1016/j.nima.2009.09.026
- Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825. http://jmlr.org/papers/v12/pedregosa11a.html
- Rozwadowska, K., Vissani, F., & Cappellaro, E. 2021, New Astron., 83, 101498, doi: 10.1016/j.newast.2020.101498
- Sato, K., & Suzuki, H. 1987, Phys. Rev. Lett., 58, 2722, doi: 10.1103/PhysRevLett.58.2722
- Totani, T., Sato, K., Dalhed, H. E., & Wilson, J. R. 1998, ApJ, 496, 216, doi: 10.1086/305364
- Vigorito, C. F., Bruno, G., Fulgione, W., & Molinario, A. 2020, PoS, ICRC2019, 1028, doi: 10.22323/1.358.1028
- Wright, W. P., Nagaraj, G., Kneller, J. P., Scholberg, K., & Seitenzahl, I. R. 2016, Physical Review D, 94, doi: 10.1103/physrevd.94.025026
- Yamada, S., Awai, K., Hayato, Y., et al. 2010, IEEE Transactions on Nuclear Science, 57, 428, doi: 10.1109/TNS.2009.2034854
- Zhang, Y., et al. 2016, Phys. Rev. D, 93, 012004, doi: 10.1103/PhysRevD.93.012004
- Zuber, K. 2015, Nucl. Part. Phys. Proc., 265-266, 233, doi: 10.1016/j.nuclphysbps.2015.06.059