Drug repurposing for COVID-19 via knowledge graph completion
2021, Journal of Biomedical Informatics
https://doi.org/10.1016/J.JBI.2021.103696Abstract
Objective. To discover candidate drugs to repurpose for COVID-19 using literature-derived knowledge and knowledge graph completion methods. Methods. We propose a novel, integrative, and neural network-based literaturebased discovery (LBD) approach to identify drug candidates from PubMed and other COVID-19-focused research literature. Our approach relies on semantic triples extracted using SemRep (via SemMedDB). We identified an informative and accurate subset of semantic triples using filtering rules and an accuracy classifier developed on a BERT variant. We used this subset to construct a knowledge graph, and applied five state-of-the-art, neural knowledge graph completion algorithms (TransE, RotatE, DistMult, ComplEx, and STELP) to predict drug repurposing candidates. The models were trained and assessed using a time slicing approach and the predicted drugs were compared with a list of drugs reported in the literature and evaluated in clinical trials. These models were complemented by a discovery pattern-based approach. Results. Accuracy classifier based on PubMedBERT achieved the best performance (F 1 = 0.854) in classifying semantic predications. Among five knowledge graph completion models, TransE outperformed others (MR = 0.923, Hits@1 = 0.417). Some known drugs linked to COVID-19 in the literature were identified, as well as others that have not yet been studied. Discovery patterns enabled identification of additional candidate drugs and generation of plausible hypotheses regarding the links between the candidate drugs and COVID-19. Among them, five highly ranked and novel drugs (paclitaxel, SB 203580, alpha 2-antiplasmin, metoclopramide, and oxymatrine) and the mechanistic explanations for their potential use are further discussed.
References (125)
- SB 203580-inhibits-interleukin-6 -causes-COVID-19
- SB 203580-inhibits-TNF protein, human-associated with-COVID-19
- SB 203580-inhibits-interleukin-1, beta-associated with-COVID-19
- SB 203580-inhibits-NF-kappa B-associated with-COVID-19
- SB 203580-inhibits-Interleukin-1-causes-COVID-19
- SB 203580-inhibits-Granulocyte-Macrophage Colony-Stimulating Factor -associated with-COVID-19
- SB 203580-inhibits-Interleukin-17-associated with-COVID-19
- SB 203580-inhibits-Macrophage Colony-Stimulating Factor- associated with-COVID-19
- Similarly to paclixatel, all patterns involving SB 203580 point to a poten- tial inhibition of the hyperinflammatory response in COVID-19. According to Gaestel [105], "the role of the protein kinases p38α in inflammation and innate immunity was found when the compound SB 203580 suppressed tumor necrosis factor (TNF) production in monocytes, and this resulted in inhibition of septic (infammatory) shock." References
- Coronavirus disease (COVID-19), https://www.who.int/emergencie s/diseases/novel-coronavirus-2019, [Online; accessed 12/13/2020] (2020).
- Home -Johns Hopkins Coronavirus Resource Center, https://coronavi rus.jhu.edu/, [Online; accessed 12/13/2020] (2020).
- FDA Approves First Treatment for COVID-19 , https://www.fda.gov/ news-events/press-announcements/fda-approves-first-treatment -covid-19, [Online; accessed 12/21/2020] (2020).
- FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine, https://www.fda.gov/ news-events/press-announcements/fda-takes-key-action-fight-a gainst-covid-19-issuing-emergency-use-authorization-first-co vid-19, [Online; accessed 12/21/2020] (2020).
- FFDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine, https: //www.fda.gov/news-events/press-announcements/fda-takes-addi tional-action-fight-against-covid-19-issuing-emergency-use -authorization-second-covid, [Online; accessed 12/21/2020] (2020).
- R. C. Group, Dexamethasone in hospitalized patients with covid- 19-preliminary report, New England Journal of Medicine.
- P. Horby, M. Mafham, L. Linsell, J. L. Bell, N. Staplin, J. R. Em- berson, M. Wiselka, A. Ustianowski, E. Elmahi, B. Prudon, et al., Ef- fect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial., MedRxivdoi:10.1101/2020.07.15.20151852.
- J. H. Beigel, K. M. Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E. Hohmann, H. Y. Chu, A. Luetkemeyer, S. Kline, et al., Remdesivir for the treatment of Covid-19-preliminary report, The New England Journal of Medicine.
- O. Altay, E. Mohammadi, S. Lam, H. Turkez, J. Boren, J. Nielsen, M. Uhlen, A. Mardinoglu, Current status of COVID-19 therapies and drug repositioning applications, Iscience (2020) 101303.
- X. Wang, Y. Guan, COVID-19 drug repurposing: A review of computa- tional screening methods, clinical trials, and protein interaction assays, Medicinal Research Reviews.
- S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, et al., Drug repurposing: progress, challenges and recommendations, Nature reviews Drug discovery 18 (1) (2019) 41-58.
- Y. Zhou, F. Wang, J. Tang, R. Nussinov, F. Cheng, Artificial intelligence in COVID-19 drug repurposing, The Lancet Digital Health.
- Y. Ge, T. Tian, S. Huang, F. Wan, J. Li, S. Li, H. Yang, L. Hong, N. Wu, E. Yuan, L. Cheng, Y. Lei, H. Shu, X. Feng, Z. Jiang, Y. Chi, X. Guo, L. Cui, L. Xiao, Z. Li, C. Yang, Z. Miao, H. Tang, L. Chen, H. Zeng, D. Zhao, F. Zhu, X. Shen, J. Zeng, A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19, bioRxivdoi:10.1101/2020.03.11.986836.
- Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, F. Cheng, Network- based drug repurposing for novel coronavirus 2019-ncov/sars-cov-2, Cell discovery 6 (1) (2020) 1-18.
- Y. Zhou, Y. Hou, J. Shen, A. Kallianpur, J. Zein, D. A. Culver, S. Farha, S. Comhair, C. Fiocchi, M. U. Gack, et al., A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for covid-19, ChemRxivdoi:10.26434/chemrxiv. 12579137.v1.
- X. Zeng, X. Song, T. Ma, X. Pan, Y. Zhou, Y. Hou, Z. Zhang, K. Li, G. Karypis, F. Cheng, Repurpose open data to discover therapeutics for covid-19 using deep learning, Journal of proteome research.
- A.-L. Barabási, N. Gulbahce, J. Loscalzo, Network medicine: a network- based approach to human disease, Nature reviews genetics 12 (1) (2011) 56-68.
- S. Henry, B. T. McInnes, Literature based discovery: models, methods, and trends, Journal of biomedical informatics 74 (2017) 20-32.
- Y. Sebastian, E.-G. Siew, S. O. Orimaye, Emerging approaches in literature-based discovery: techniques and performance review, The Knowledge Engineering Review 32.
- H. Kilicoglu, D. Shin, M. Fiszman, G. Rosemblat, T. C. Rindflesch, SemMedDB: a PubMed-scale repository of biomedical semantic predica- tions., Bioinformatics 28 (23) (2012) 3158-3160.
- L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Burdick, D. Eide, K. Funk, Y. Katsis, R. M. Kinney, Y. Li, Z. Liu, W. Merrill, P. Mooney, D. A. Murdick, D. Rishi, J. Sheehan, Z. Shen, B. Stilson, A. D. Wade, K. Wang, N. X. R. Wang, C. Wilhelm, B. Xie, D. M. Raymond, D. S. Weld, O. Etzioni, S. Kohlmeier, CORD-19: The COVID-19 open research dataset, in: Proceedings of the 1st Workshop on NLP for COVID- 19 at ACL 2020, Association for Computational Linguistics, 2020.
- A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Trans- lating embeddings for modeling multi-relational data, in: C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger (Eds.), Ad- vances in Neural Information Processing Systems 26, Curran Associates, Inc., 2013, pp. 2787-2795.
- Z. Sun, Z. Deng, J. Nie, J. Tang, RotatE: Knowledge Graph Embedding by Relational Rotation in Complex sSpace, arXiv abs/1902.10197. URL http://arxiv.org/abs/1902.10197
- B. Yang, W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and inference in knowledge bases, arXiv preprint arXiv:1412.6575.
- T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex em- beddings for simple link prediction, International Conference on Machine Learning (ICML), 2016.
- B. Wang, T. Shen, G. Long, T. Zhou, Y. Chang, Semantic triple encoder for fast open-set link prediction, arXiv preprint arXiv:2004.14781.
- D. Hristovski, C. Friedman, T. C. Rindflesch, B. Peterlin, Exploiting se- mantic relations for literature-based discovery., AMIA Annual Symposium proceedings (2006) 349-353.
- D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O'Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, et al., A sars-cov-2 protein interaction map reveals targets for drug repurposing, Nature (2020) 1-13.
- L. Riva, S. Yuan, X. Yin, L. Martin-Sancho, N. Matsunaga, L. Pache, S. Burgstaller-Muehlbacher, P. D. De Jesus, P. Teriete, M. V. Hull, et al., Discovery of sars-cov-2 antiviral drugs through large-scale compound re- purposing, Nature (2020) 1-11.
- C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, et al., Analysis of therapeutic targets for sars-cov-2 and dis- covery of potential drugs by computational methods, Acta Pharmaceutica Sinica B.
- A. A. Elfiky, Anti-hcv, nucleotide inhibitors, repurposing against covid-19, Life sciences (2020) 117477.
- M. Kandeel, M. Al-Nazawi, Virtual screening and repurposing of fda ap- proved drugs against covid-19 main protease, Life sciences (2020) 117627.
- K. Al-Khafaji, D. AL-Duhaidahawi, T. Taskin Tok, Using integrated com- putational approaches to identify safe and rapid treatment for sars-cov-2, Journal of Biomolecular Structure and Dynamics (0) (2020) 1-11.
- J. Wang, Fast identification of possible drug treatment of coronavirus disease-19 (covid-19) through computational drug repurposing study, Journal of Chemical Information and Modeling.
- A. A. Elfiky, Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against sars-cov-2 rna dependent rna polymerase (rdrp): A molecular docking study, Life sciences (2020) 117592.
- D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, M. Hassanali, Drugbank: a knowledgebase for drugs, drug actions and drug targets, Nucleic acids research 36 (suppl 1) (2008) D901- D906.
- A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, et al., Chembl: a large-scale bioactivity database for drug discovery, Nucleic acids research 40 (D1) (2012) D1100-D1107.
- C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Ty- ers, Biogrid: a general repository for interaction datasets, Nucleic acids research 34 (suppl 1) (2006) D535-D539.
- C. Cava, G. Bertoli, I. Castiglioni, In silico discovery of candidate drugs against covid-19, Viruses 12 (4) (2020) 404.
- S. Ray, S. Lall, A. Mukhopadhyay, S. Bandyopadhyay, A. Schönhuth, Predicting potential drug targets and repurposable drugs for covid-19 via a deep generative model for graphs, arXiv preprint arXiv:2007.02338.
- D. M. Gysi, Í. D. Valle, M. Zitnik, A. Ameli, X. Gan, O. Varol, H. Sanchez, R. M. Baron, D. Ghiassian, J. Loscalzo, et al., Network medicine frame- work for identifying drug repurposing opportunities for covid-19, arXiv preprint arXiv:2004.07229.
- D. R. Swanson, Fish oil, Raynaud's syndrome, and undiscovered public knowledge., Perspectives in biology and medicine 30 (1) (1986) 7-18.
- B. Wilkowski, M. Fiszman, C. M. Miller, D. Hristovski, S. Arabandi, G. Rosemblat, T. C. Rindflesch, Graph-based methods for discovery browsing with semantic predications, in: AMIA annual symposium pro- ceedings, Vol. 2011, American Medical Informatics Association, 2011, p. 1514.
- M. J. Cairelli, C. M. Miller, M. Fiszman, T. E. Workman, T. C. Rindflesch, Semantic MEDLINE for discovery browsing: using semantic predications and the literature-based discovery paradigm to elucidate a mechanism for the obesity paradox., in: AMIA Annual Symposium Proceedings, 2013, pp. 164-173.
- D. R. Swanson, N. R. Smalheiser, An interactive system for finding com- plementary literatures: a stimulus to scientific discovery, Artificial intelli- gence 91 (2) (1997) 183-203.
- M. Weeber, H. Klein, L. T. de Jong-van den Berg, R. Vos, Using con- cepts in literature-based discovery: Simulating swanson's raynaud-fish oil and migraine-magnesium discoveries, Journal of the american society for information science and technology 52 (7) (2001) 548-557.
- C. B. Ahlers, D. Hristovski, H. Kilicoglu, T. C. Rindflesch, Using the literature-based discovery paradigm to investigate drug mechanisms, in: AMIA Annual Symposium Proceedings, Vol. 2007, American Medical In- formatics Association, 2007, p. 6.
- J. Preiss, M. Stevenson, R. Gaizauskas, Exploring relation types for literature-based discovery, Journal of the American Medical Informatics Association 22 (5) (2015) 987-992.
- D. Cameron, R. Kavuluru, T. C. Rindflesch, A. P. Sheth, K. Thirunarayan, O. Bodenreider, Context-driven automatic subgraph creation for literature-based discovery, Journal of biomedical informatics 54 (2015) 141-157.
- T. Cohen, R. Schvaneveldt, D. Widdows, Reflective random indexing and indirect inference: A scalable method for discovery of implicit connections, Journal of biomedical informatics 43 (2) (2010) 240-256.
- T. Cohen, D. Widdows, R. Schvaneveldt, T. C. Rindflesch, Finding schizophrenia's prozac emergent relational similarity in predication space, in: International Symposium on Quantum Interaction, Springer, 2011, pp. 48-59.
- T. Cohen, D. Widdows, Embedding of semantic predications, Journal of biomedical informatics 68 (2017) 150-166.
- D. Hristovski, A. Kastrin, B. Peterlin, T. C. Rindflesch, Combining se- mantic relations and dna microarray data for novel hypotheses generation, in: Linking literature, information, and knowledge for biology, Springer, Berlin, Heidelberg, 2010, pp. 53-61.
- D. Hristovski, T. Rindflesch, B. Peterlin, Using literature-based discovery to identify novel therapeutic approaches, Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry- Cardiovascular & Hematological Agents) 11 (1) (2013) 14-24.
- T. Cohen, D. Widdows, C. Stephan, R. Zinner, J. Kim, T. Rindflesch, P. Davies, Predicting high-throughput screening results with scalable literature-based discovery methods, CPT: pharmacometrics & systems pharmacology 3 (10) (2014) 1-9.
- R. Zhang, M. J. Cairelli, M. Fiszman, H. Kilicoglu, T. C. Rindflesch, S. V. Pakhomov, G. B. Melton, Exploiting literature-derived knowledge and semantics to identify potential prostate cancer drugs, Cancer informatics 13 (2014) CIN-S13889.
- M. Rastegar-Mojarad, K. E. Ravikumar, D. Li, R. Prasad, H. Liu, A new method for prioritizing drug repositioning candidates extracted by literature-based discovery, 2015 IEEE International Conference on Bioin- formatics and Biomedicine (BIBM) (2015) 669-674.
- H.-T. Yang, J.-H. Ju, Y.-T. Wong, I. Shmulevich, J.-H. Chiang, Literature-based discovery of new candidates for drug repurposing, Brief- ings in bioinformatics 18 (3) (2017) 488-497.
- Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches and applications, IEEE Transactions on Knowledge and Data Engineering 29 (12) (2017) 2724-2743.
- Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes., in: AAAI, Vol. 14, Citeseer, 2014, pp. 1112- 1119.
- M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learn- ing on multi-relational data., in: ICML, Vol. 11, 2011, pp. 809-816.
- M. Nickel, L. Rosasco, T. Poggio, Holographic embeddings of knowledge graphs, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1955-1961.
- T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2d knowledge graph embeddings, arXiv preprint arXiv:1707.01476.
- M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, M. Welling, Modeling relational data with graph convolutional networks, in: European Semantic Web Conference, Springer, 2018, pp. 593-607.
- L. Yao, C. Mao, Y. Luo, Kg-bert: Bert for knowledge graph completion, arXiv preprint arXiv:1909.03193.
- D. Sosa, A. Derry, M. Guo, E. Wei, C. Brinton, R. Altman, A literature- based knowledge graph embedding method for identifying drug repurpos- ing opportunities in rare diseases., in: Pacific Symposium on Biocomput- ing. Pacific Symposium on Biocomputing, Vol. 25, 2020, pp. 463-474.
- M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with graph convolutional networks, Bioinformatics 34 (13) (2018) i457- i466.
- S. Sang, Z. Yang, X. Liu, L. Wang, H. Lin, J. Wang, M. Dumontier, Gredel: A knowledge graph embedding based method for drug discovery from biomedical literatures, IEEE Access 7 (2018) 8404-8415.
- X. Chen, Z. L. Ji, Y. Z. Chen, Ttd: therapeutic target database, Nucleic acids research 30 (1) (2002) 412-415.
- T. C. Rindflesch, M. Fiszman, The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hyper- nymic propositions in biomedical text., Journal of Biomedical Informatics 36 (6) (2003) 462-477.
- H. Kilicoglu, G. Rosemblat, M. Fiszman, D. Shin, Broad-coverage biomed- ical relation extraction with semrep, BMC bioinformatics 21 (2020) 1-28.
- D. A. B. Lindberg, B. L. Humphreys, A. T. McCray, The Unified Medical Language System, Methods of Information in Medicine 32 (1993) 281-291.
- O. Bodenreider, The Unified Medical Language System (UMLS): integrat- ing biomedical terminology, Nucleic Acids Research 32 (Database issue) (2004) 267-270.
- G. Chen, M. J. Cairelli, H. Kilicoglu, D. Shin, T. C. Rindflesch, Aug- menting microarray data with literature-based knowledge to enhance gene regulatory network inference, PLOS Computational Biology 10 (6) (2014) 1-16. doi:10.1371/journal.pcbi.1003666.
- S. R. Sukumar, L. W. Roberts, J. A. Graves, A Reasoning And Hypothesis-Generation Framework Based On Scalable Graph Analytics Enabling Discoveries In Medicine Using Cray Urika-XA And Urika-GD, 2016.
- A. Kastrin, T. C. Rindflesch, D. Hristovski, Link prediction on the seman- tic medline network, in: International Conference on Discovery Science, Springer, 2014, pp. 135-143.
- J. Sybrandt, A. Carrabba, A. Herzog, I. Safro, Are abstracts enough for hypothesis generation?, in: 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 1504-1513.
- T. C. Rindflesch, C. L. Blake, M. J. Cairelli, M. Fiszman, C. J. Zeiss, H. Kilicoglu, Investigating the role of interleukin-1 beta and glutamate in inflammatory bowel disease and epilepsy using discovery browsing, Jour- nal of biomedical semantics 9 (1) (2018) 25.
- Q. Chen, A. Allot, Z. Lu, Keep up with the latest coronavirus research, Natur 579 (7798) (2020) 193-193.
- S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports 424 (4-5) (2006) 175- 308.
- B. T. McInnes, Extending the log-likelihood measure to improve colloca- tion identification, Master's thesis, Univerity of Minnesota, Minneapolis, MN (Dec. 2004).
- R. Zhang, T. J. Adam, G. Simon, M. J. Cairelli, T. Rindflesch, S. Pakho- mov, G. B. Melton, Mining biomedical literature to explore interactions between cancer drugs and dietary supplements, AMIA Summits on Trans- lational Science Proceedings 2015 (2015) 69.
- J. Vasilakes, R. Rizvi, G. B. Melton, S. Pakhomov, R. Zhang, Evaluat- ing active learning methods for annotating semantic predications, JAMIA open 1 (2) (2018) 275-282.
- J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, in: NAACL-HLT (1), 2019.
- J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, J. Kang, Biobert: a pre-trained biomedical language representation model for biomedical text mining, Bioinformatics 36 (4) (2020) 1234-1240.
- E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, M. McDermott, Publicly available clinical bert embeddings, in: Proceed- ings of the 2nd Clinical Natural Language Processing Workshop, 2019, pp. 72-78.
- Y. Peng, S. Yan, Z. Lu, Transfer learning in biomedical natural language processing: An evaluation of bert and elmo on ten benchmarking datasets, in: Proceedings of the 18th BioNLP Workshop and Shared Task, 2019, pp. 58-65.
- Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, H. Poon, Domain-specific language model pretraining for biomed- ical natural language processing, arXiv preprint arXiv:2007.15779.
- J. L. Fleiss, Measuring nominal scale agreement among many raters., Psy- chological Bulletin 76 (5) (1971) 378-382.
- D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
- D. Zheng, X. Song, C. Ma, Z. Tan, Z. Ye, J. Dong, H. Xiong, Z. Zhang, G. Karypis, DGL-KE: Training knowledge graph embeddings at scale, arXiv preprint arXiv:2004.08532.
- A. R. Aronson, F.-M. Lang, An overview of MetaMap: historical perspec- tive and recent advances, Journal of the American Medical Informatics Association (JAMIA) 17 (3) (2010) 229-236.
- A. T. McCray, A. Burgun, O. Bodenreider, Aggregating UMLS semantic types for reducing conceptual complexity., Proceedings of Medinfo 10 (pt 1) (2001) 216-20.
- T. U. Singh, S. Parida, M. C. Lingaraju, M. Kesavan, D. Kumar, R. K. Singh, Drug repurposing approach to fight COVID-19, Pharmacological Reports 72 (6) (2020) 1479-1508. doi:10.1007/s43440-020-00155-6. URL http://link.springer.com/10.1007/s43440-020-00155-6
- L. v. d. Maaten, G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research 9 (Nov) (2008) 2579-2605.
- J. M. Sanders, M. L. Monogue, T. Z. Jodlowski, J. B. Cutrell, Pharmaco- logic treatments for coronavirus disease 2019 (covid-19): a review, Jama 323 (18) (2020) 1824-1836.
- W. J. Wiersinga, A. Rhodes, A. C. Cheng, S. J. Peacock, H. C. Prescott, Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review, JAMA 324 (8) (2020) 782-793.
- D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, D. Phung, A cap- sule network-based embedding model for knowledge graph completion and search personalization, arXiv preprint arXiv:1808.04122.
- B. A. Weaver, How taxol/paclitaxel kills cancer cells, Molecular biology of the cell 25 (18) (2014) 2677-2681.
- M. Z. Tay, C. M. Poh, L. Rénia, P. A. MacAry, L. F. Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nature Reviews Immunology (2020) 1-12.
- W. Miesbach, M. Makris, COVID-19: coagulopathy, risk of thrombo- sis, and the rationale for anticoagulation, Clinical and Applied Throm- bosis/Hemostasis 26 (2020) 1076029620938149.
- S. Ran, The role of TLR4 in chemotherapy-driven metastasis, Cancer research 75 (12) (2015) 2405-2410.
- S. C. S. Brandão, J. d. O. X. Ramos, L. T. Dompieri, E. T. A. M. Godoi, J. L. Figueiredo, E. S. C. Sarinho, S. Chelvanambi, M. Aikawa, Is Toll- like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities?, Cytokine & Growth Factor Reviews.
- DailyMed: Paclitaxel injection, https://dailymed.nlm.nih.gov/daily med/drugInfo.cfm?setid=9ffd3e34-537f-4f65-b00e-57c25bab3b01, [Online; accessed 12/21/2020] (2020).
- M. Gaestel, What goes up must come down: molecular basis of MAP- KAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition, Biological chemistry 394 (10) (2013) 1301-1315.
- H.-L. Ji, R. Zhao, S. Matalon, M. A. Matthay, Elevated plasmin (ogen) as a common risk factor for COVID-19 susceptibility, Physiological reviews.
- C. Constantin, M. Neagu, T. D. Supeanu, V. Chiurciu, D. A. Spandidos, IgY-turning the page toward passive immunization in COVID-19 infection, Experimental and Therapeutic Medicine 20 (1) (2020) 151-158.
- S. C. Lee, K. N. Lee, D. G. Schwartzott, K. Jackson, W.-C. Tae, P. Mc- Kee, Purification of human α2-antiplasmin with chicken IgY specific to its carboxy-terminal peptide, Preparative biochemistry & biotechnology 27 (4) (1997) 227-237.
- Y. Takeuchi, T. Ikeda, S. Takeuchi, H. Ito, Y. Sugiyama, T. Matsukawa, S. Iwase, T. Mano, Effect of metoclopramide on muscle sympathetic nerve activity in humans., Environmental medicine: annual report of the Re- search Institute of Environmental Medicine, Nagoya University 37 (1) (1993) 95.
- Y. Tizabi, B. Getachew, R. L. Copeland, M. Aschner, Nicotine and the nicotinic cholinergic system in COVID-19, The FEBS journal 287 (17) (2020) 3656-3663.
- R. W. Pero, B. Axelsson, D. Siemann, D. Chaplin, G. Dougherty, Newly discovered anti-inflammatory properties of the benzamides and nicoti- namides, in: ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer, Springer, 1999, pp. 119-125.
- F. Zhang, J. R. Mears, L. Shakib, J. I. Beynor, S. Shanaj, I. Korsun- sky, A. Nathan, A. M. P. R. Arthritis, et al., IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 and other diseases with tissue inflammation, bioRxiv.
- X. Lan, J. Zhao, Y. Zhang, Y. Chen, Y. Liu, F. Xu, Oxymatrine exerts organ-and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside, Pharmacological Research 151 (2020) 104541.
- M. Huang, Y.-Y. Hu, X.-Q. Dong, Q.-P. Xu, W.-H. Yu, Z.-Y. Zhang, The protective role of oxymatrine on neuronal cell apoptosis in the hemorrhagic rat brain, Journal of ethnopharmacology 143 (1) (2012) 228-235.
- Y. Chi, Y. Ge, B. Wu, W. Zhang, T. Wu, T. Wen, J. Liu, X. Guo, C. Huang, Y. Jiao, et al., Serum cytokine and chemokine profile in re- lation to the severity of coronavirus disease 2019 in China, The Journal of infectious diseases 222 (5) (2020) 746-754.
- A. Choudhury, S. Mukherjee, In silico studies on the comparative char- acterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs, Journal of medical virology.