Academia.eduAcademia.edu

Outline

Experiences with CiceRobot, a Museum Guide Cognitive Robot

2005, Lecture Notes in Computer Science

https://doi.org/10.1007/11558590_48

Abstract

The paper describes CiceRobot, a robot based on a cognitive architecture for robot vision and action. The aim of the architecture is to integrate visual perception and actions with knowledge representation, in order to let the robot to generate a deep inner understanding of its environment. The principled integration of perception, action and of symbolic knowledge is based on the introduction of an intermediate representation based on Gärdenfors conceptual spaces. The architecture has been tested on a RWI B21 autonomous robot on tasks related with guided tours in the Archaeological Museum of Agrigento. Experimental results are presented.

References (12)

  1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.
  2. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, S. Thrun, Experiences with an interactive museum tour-guide robot, Artifi- cial Intelligence 114 (1999) 3-55.
  3. A. Chella, M. Frixione, and S. Gaglio. A cognitive architecture for artificial vision. Artificial Intelligence, pp. 89:73-111, 1997.
  4. A. Chella, M. Frixione, S.Gaglio, Understanding dynamic scenes, Artificial Intelli- gence, Vol 123, pp. 89-132, 2000.
  5. A. Chella, M.Cossentino, R. Pirrone, A. Ruisi, Modeling Ontologies for Robotic En- vironments, The Fourteenth International Conference on Software Engineering and Knowledge Engineering -July 15-19, 2002 -Ischia, Italy.
  6. P. Gärdenfors, Conceptual Spaces, MIT Press, Bradford Books, Cambridge, MA, (2000).
  7. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cam- bridge University Press, 2004.
  8. I. Infantino, M. Cossentino, A. Chella, "An agent based architecture for robotic vi- sion systems", Agentcities iD3, Barcelona, Spain, 6-8 February 2003.
  9. T. K. Landauer, P. W. Foltz, D. Laham, An introduction to Latent Semantic Analysis, Discourse Processes, pp. 259-284, 1998.
  10. G. Stein, "Lens distortion calibration using point correspondences", in proc. Com- puter Vision and Pattern Recognition Conference, pages 602-608, 1997.
  11. Voice Extensible Markup Language Home Page, http://www.w3.org/TR/2004/REC- voicexml20-20040316/
  12. Z. Zhang, "A Flexible New Technique for Camera Calibration", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, n. 11, pp. 1330-1334, 2000.