Two contributions to the representation theory of algebraic groups
2002
Abstract
Sei V ein endlich-dimensionaler, komplexer Vektorraum. Eine Teilmenge X in V hat die Trennungseigenschaft, falls das Folgende gilt: Für je zwei linear unabhängige lineare Funktionen l, m auf V existiert ein Punkt x in X mit l(x) = 0 und m(x) = 0. Wir interessieren uns für den Fall V = C[x, y] n , d.h. V ist eine irreduzible Darstellung von SL 2 . Die Teilmengen, die wir untersuchen, sind Bahnabschlüsse von Elementen aus C[x, y] n . Wir beschreiben die Bahnen, die die Trennungseigenschaft erfüllen:
FAQs
AI
What characterizes the separation property (SP) of orbit closures in representation spaces?
The main result establishes that the closure of an orbit O_f has the separation property if and only if the form f contains a linear factor of multiplicity one.
How does the Clebsch-Gordan decomposition apply to SL2 representations?
For any irreducible SL2 representations, the Clebsch-Gordan decomposition shows that the tensor product V_n ⊗ V_m can be represented uniquely as a direct sum of irreducible components with multiplicity one.
What explains the behavior of SL2 orbit closures for binary forms of degree n?
The study reveals that orbits O_x^n do not possess the separation property for n >= 2, whereas orbits O_x^{n-1}y do exhibit the SP, marking a distinction in their closure properties.
What is the significance of the projection operators in decomposable tensors of Cartan components?
These projection operators play a crucial role in identifying decomposable tensors within the Cartan component, revealing that they must be a subset of the closure of the orbits involving highest weight vectors.
How do dense orbits relate to the small Cartan components of representations?
The criterion shows that if the stabilizer of a highest weight vector is not contained in a parabolic subgroup, the corresponding Cartan component cannot be small, emphasizing the role of orbit density.
References (21)
- A. Borel, Linear Algebraic Groups, Second Enlarged Edition, GTM 126, Springer-Verlag, New York 1997
- N. Bourbaki, Groupes et algèbres de Lie. Chap. IV -VI, Hermann, Paris 1968
- N. Bourbaki, Groupes et algèbres de Lie. Chap. 7, 8, Hermann, Paris 1975
- M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. 18 (1985), 345-387
- M. Brion, Sur l'image de l'application moment, Seminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, (Paris 1986), Springer Berlin, 1987, 177-192
- W. Fulton, J. Harris, Representation Theory. A First Course, Springer, New York 1996
- R. Goodman, N. R. Wallach, Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge 1998
- J. E. Humphreys, Linear Algebraic Groups, GTM 21, Springer, New York 1975
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9 (6th corrected printing), Springer, New York 1994
- A. Joseph, Quantum Groups and Their Primitive Ideals, Springer, Berlin 1995
- B. Kostant, Personal Communication, June 1998
- H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig 1985
- H. Kraft, C. Procesi, Classical Invariant Theory. A Primer, Lecture Notes, Version 2000
- H. Kraft, N. R. Wallach, Personal Communication, September
- H. Kraft, N. R. Wallach, On the Separation Property of Orbits in Representation Spaces, to appear in J. Algebra
- P. Littelmann, A Generalization of the Littlewood-Richardson Rule, J. Algebra 130 (1990), 328-368
- C. Ohn, Personal Communication, April 2002
- A.L. Onishik, E.B. Vinberg, Lie Groups and Algebraic Groups, Springer, Berlin 1990
- A.L. Onishik, E.B. Vinberg, Linear Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras, Encyclopaedia of Mathemat- ical Sciences Vol. 41, Springer, Berlin 1994
- A.N. Parshin, I.R. Shafarevich (Eds.), Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences Vol. 55, Springer, Berling 1994
- E.B. Vinberg, Linear Representations of Groups, Birkhäuser, Basel