Academia.eduAcademia.edu

Outline

Three contributions in representation theory

https://doi.org/10.17760/D20001058

Abstract

The aim of the current dissertation is to address certain problems in the representation theory of simple Lie algebras and associated quantum algebras. In Part I, we study the simple Lie group of type G 2 from the cluster point of view. We prove a conjecture of Geiss, Leclerc and Schröer [25], relating the geometry of the partial flag varieties to cluster algebras in the case of G 2. In Part II, we establish a concrete relationship between certain infinite dimensional quantum groups, namely the quantum loop algebra U (Lg) and the Yangian Y (g), associated with a simple Lie algebra g. The main result of this part gives a construction of an explicit isomorphism between completions of these algebras, thus strengthening the well known Drinfeld's degeneration homomorphism [10, 27]. In Part III, we give a proof of the monodromy conjecture of Toledano Laredo [50] for the case of g = sl 2. The monodromy conjecture relates two classes of representations of the affine braid group, the first arising from the quantum Weyl group operators of the quantum loop algebra and the second coming from the monodromy of the trigonometric Casimir connection, a flat connection introduced by Toledano Laredo [50]. To Prof. Valerio Toledano Laredo, for teaching me the monodromy side of quantum groups, for your constant availability and for having great patience with me during all our joint projects.

References (53)

  1. A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras 3: Upper bounds and double Bruhat cells, Duke Mathematical Journal 126 (2005), no. 1, 1-52.
  2. A. Berenstein and A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128-166.
  3. E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungs- gruppe, Invent. Math. 12 (1971), 57-61.
  4. V. Chari and A. Pressley, Yangians and R-matrices, L'Enseignement Mathématique 36 (1990), 267-302.
  5. Quantum affine algebras, Communications in Mathematical Physics 142 (1991), 261-283.
  6. A guide to quantum groups, Cambridge University Press, 1994.
  7. I. Cherednik, Double affine Hecke algebras, Cambridge University Press, 2005.
  8. J. Ding and I. Frenkel, Isomorphism of two realizations of the quantum affine algebra Uq( gl(n)), Communications in Mathematical Physics (1994), no. 156, 277-300.
  9. V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), no. 1, 254-258.
  10. Quantum groups, Proceedings of the I.C.M., Berkeley (1986), 798-820.
  11. A new realization of Yangians and quantum affine algebras, Soviet Math. Dokl. 36 (1988), no. 2, 212-216.
  12. Quasi Hopf algebras and the KZ equations, in Problems of modern QFT (1989), 1-13.
  13. On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), no. 2, 321-342.
  14. P. Etingof and N. Geer, Monodromy of trigonometric KZ equations, International Mathematics Research Notices (2007), 1-15.
  15. P. Etingof and D. Kazhdan, Quantization of Lie bialgebras -I, Selecta Mathematica, New Series 2 (1996), no. 1, 1-41.
  16. P. Etingof and O. Schiffmann, Lectures on quantum groups, 1 ed., International Press, 1998.
  17. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, Journal of the A.M.S. 12 (1999), no. 2, 335-380.
  18. Cluster algebras 1: Foundations, Journal of the A.M.S. 15 (2002), no. 2, 497-529.
  19. Cluster algebra 2: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.
  20. Cluster algebras 4: Coefficients, Compos. Math. 143 (2007), no. 1, 112-164.
  21. S. Gautam, Cluster algebras and grassmannians of type G2, Algebras and representation theory 13 (2010), no. 3, 335-357.
  22. S. Gautam and V. Toledano Laredo, Yangians and quantum loop algebras, arXiv:1012.3687v1 (2010), submitted.
  23. Monodromy of the trigonometric Casimir connection for sl2, preprint (2011).
  24. C. Geiss, B. Leclerc, and J. Schroer, Partial flag varieties and preprojective algebras, Annales de l'institut Fourier 58 (2008), no. 3, 825-876.
  25. V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type An, International Mathe- matics Research Notices (1993), no. 3, 67-85.
  26. N. Guay and X. Ma, From quantum loop algebras to Yangians, submitted, 2010.
  27. J. C. Jantzen, Lectures on quantum groups, Graduate studies in Mathematics, A.M.S., 1996.
  28. C. Kassel, Quantum groups, Graduate texts in mathematics, Springer-Verlag, 1995.
  29. A. N. Kirillov and N. Reshetikhin, q-Weyl group and a multiplicative formula for universal R-matrices, Comm. Math. Phys. (1990), no. 134, 421-441.
  30. T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Annales de l'insitut Fourier 37 (1987), no. 4, 139-160.
  31. S. Z. Levendorskii, On generators and defining relations of Yangians, Journal of Geometry and Physics 12 (1992), 1-11.
  32. On PBW bases for Yangians, Letters in Mathematical Physics 27 (1993), 37-42.
  33. G. Lusztig, Introduction to quantum groups, Birkhauser Boston, 1993.
  34. I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge University Press, 2003.
  35. J. Millson and V. Toledano Laredo, Casimir operator and monodromy representations of generalized braid groups, Transformation Groups 10 (2005), no. 2, 217-254.
  36. A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, 2007.
  37. H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Mathematical Journal 91 (1998), no. 3, 515-560.
  38. Quiver varieties and finite dimensional representations of quantum affine algebras, Journal of the A.M.S. 14 (2001), 145-238.
  39. V. D. Nguyen, The fundamental group of the spaces of regular orbits of the affine Weyl groups, Topology 22 (1983), 425-435.
  40. G. I. Olshanskii, Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yan- gians, Topics in representation theory, Adv. Soviet Math., 2, A.M.S., 1991, pp. 1-66.
  41. B. Parshall and J. P. Wang, Quantum linear groups, Memoirs of the A.M.S. 89 (1991), no. 439.
  42. Y. S. Soibelman, Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. (1991), no. 2, 161-178.
  43. V. O. Tarasov, Structure of quantum L-operators for the R-matrix of the XXZ-model, Theoretical and Mathe- matical Physics 61 (1984), 1065-1071.
  44. Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamil- tonians, Theoretical and Mathematical Physics 63 (1985), 440-454.
  45. V. O. Tarasov and A. Varchenko, Duality for Knizhnik-Zamolodchikov and dynamical equations, Acta Appl. Math. 73 (2002), 141-154.
  46. V. Toledano Laredo, Flat connections and quantum groups, Acta Appl. Math. 73 (2002), no. 1-2, 155-173.
  47. A Kohno-Drinfeld theorem for quantum Weyl groups, Duke Mathematical Journal 112 (2002), no. 3, 421-451.
  48. Quasi-Coxeter algebras, Dynkin diagram cohomology and quantum Weyl groups, Int. Math. Res. Pap.
  49. The trigonometric Casimir connection of a simple Lie algebra, Journal of Algebra 329 (2011), 286-327.
  50. H. van der Lek, Extended Artin groups, Singularities (Arcata, California), Proceedings of Symposia in Pure Mathematics, vol. 40, AMS, 1983, pp. 117-121.
  51. The homotopy type of hyperplane complements, Ph.D. thesis, Katholieke Universiteit Nijmegen, 1983.
  52. M. Varagnolo, Quiver varieties and Yangians, Letters in Mathematical Physics 53 (2000), no. 4, 273-283.
  53. E. Vasserot, Affine quantum groups and equivariant K-theory, Transformation Groups 3 (1998), no. 3, 269-299.