Academia.eduAcademia.edu

Outline

Ammann Bars for Octagonal Tilings

2022, Cornell University - arXiv

https://doi.org/10.48550/ARXIV.2205.13973

Abstract

Ammann bars are formed by segments (decorations) on the tiles of a tiling such that forming straight lines with them while tiling forces nonperiodicity. Only a few cases are known, starting with Robert Ammann's observations on Penrose tilings, but there is no general explanation or construction. In this article we propose a general method for cut and project tilings based on the notion of subperiods and we illustrate it with an aperiodic set of 36 decorated prototiles related to what we called Cyrenaic tilings.

References (20)

  1. Bédaride, N., Fernique, Th.: The Ammann-Beenker tilings revisited. In: Schmid, S., Withers, R.L., Lifshitz, R. (eds.) Aperiodic Crystals. pp. 59-65. Springer Netherlands, Dordrecht (2013)
  2. Bédaride, N., Fernique, Th.: When periodicities enforce aperiodicity. Com- munications in Mathematical Physics 335(3), 1099-1120 (Feb 2015)
  3. Bédaride, N., Fernique, Th.: Weak local rules for planar octagonal tilings. Israel Journal of Mathematics 222(1), 63-89 (Oct 2017)
  4. Bédaride, N., Fernique, Th.: Canonical projection tilings defined by pat- terns. Geometriae Dedicata 208(1), 157-175 (feb 2020)
  5. Beenker, F.P.M.: Algebraic theory of non periodic tilings of the plane by two simple building blocks: a square and a rhombus. Tech. Rep. TH Report 82-WSK-04, Technische Hogeschool Eindhoven (1982)
  6. Berger, R.: The Undecidability of the domino problem. American Mathe- matical Society (1966)
  7. de Bruijn, N.G.: Algebraic theory of Penrose's non-periodic tilings of the plane. Mathematics Proceedings A84, 39-66 (1981), reprinted in [20]
  8. Burkov, S.E.: Absence of weak local rules for the planar quasicrystalline tiling with the 8-fold rotational symmetry. Communications in Mathemat- ical Physics 119(4), 667-675 (1988)
  9. Gardner, M.: Mathematical games. Scientific American 236(1), 110-121 (1977)
  10. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Company, New York (1987)
  11. Harriss, E.O.: On Canonical Substitution Tilings. Ph.D. thesis, University of London (2004)
  12. Levitov, L.: Local rules for quasicrystals. Communications in Mathematical Physics 119, 627-666 (1988)
  13. Penrose, R.: The Rôle of aesthetics in pure and applied mathematical research. Bulletin of the Institute of Mathematics and its Applications pp. 266-271 (1974), reprinted in [20]
  14. Penrose, R.: Pentaplexity. Math. Intelligencer 2(1), 32-37 (1978)
  15. Penrose, R.: Set of tiles for covering a surface. United States Patent (4,133,152) (1979)
  16. Porrier, C., Blondin Massé, A.: The Leaf function of graphs associated with Penrose tilings. International Journal of Graph Computing 1.1, 1-24 (2020)
  17. Senechal, M.: Quasicrystals and Geometry. Cambridge University Press (1995)
  18. Senechal, M.: The Mysterious Mr. Ammann. The Mathematical Intelli- gencer 26, 10-21 (2004)
  19. Socolar, J.E.S.: Simple octagonal and dodecagonal quasicrystals. Phys. Rev. B 39, 10519-10551 (1989)
  20. Steinhardt, P.J., Ostlund, S.: The Physics of Quasicrystals. World Scientific (1987), collection of reprints. ISBN 9971-50-226-7