A geometrical approach of quasiperiodic tilings
1988, Communications in Mathematical Physics
https://doi.org/10.1007/BF01218479Abstract
Tilings provide generalized frames of coordinates and as such they are used in different areas of physics. The aim of the present paper is to present a unified and systematic description of a class of tilings which have appeared in contexts as disconnected as crystallography and dynamical systems. The tilings of this class show periodic or quasiperiodic ordering and the tiles are related to the unit cube through affine transformations. We present a section procedure generating canonical quasiperiodic tilings and we prove that true tilings are indeed obtained. Moreover, the procedure provides a direct and simple characterization of quasiperiodicity which is suitable for tilings but which does not refer to Fourier transform.
References (23)
- Adler, R.: Similarity of automorphisms of the torus. Mem. Am. Math. Soc. 98 (1970)
- Bowen, R.: Ergodic states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Berlin, Heidelberg, New York: Springer 1975
- Bowen, R.: Proc. Am. Math. Soc. 71, 130-132 (1978)
- Bedford, T.: Ergodic Theory Dyn. Syst. 6, 325-333 (1985)
- Shechtman, D., Blech, I, Gratias, D, Cahn, J.W.: Phys. Rev. Lett. 53, 1951 (1984)
- Les Houches, Workshop on Aperiodic Crystals, 11-22 March 1986; Michel, L., Gratias, D. (eds.). J. Phys. Colloque
- deBruijn, N.G.: Kon. J. Nederl. Akad. Wetensch. Proc. A84, 38-66 (1981)
- Levine, D., Steinhardt, P.: Phys. Rev. B34, 596 (1986) Socolar, J., Steinhardt, P., Levine, D.: Phys. Rev. B32, 5547 (1985)
- Janssen, T.: Acta Crystallogr. A 42, 261 (1986)
- Bak, P.: Phys. Rev. Lett. 56, 861 (1986) Frenkel, D., Henley, C, Siggia, E.: Phys. Rev. B34, 3649 (1986)
- Socolar, J., Lubensky, T., Steinhardt, P.: Phys. Rev. B34, 3345 (1986)
- Kalugin, P.A., Kitaev, A.Yu., Levitov, L.C.: JETP Lett. 41, 145 (1985);
- J. Physique Lett. 46, L-601 (1985).
- Elser, V.: Phys. Rev. Lett. 54, 1730 (1985); Phys. Rev. B32, 4982 (1985) Duneau, M., Katz, A.
- Gahler, F., Rhyner, J. 13. Katz, A., Duneau, M. Phys. Rev. Lett. 54, 2477 (1985) J. Phys. A 19, 267(1986) J. Physique 47, 181 (1986)
- deBruijn, N.G.: Les Houches, Workshop on Aperiodic Crystals, 11-22 March 1986; Michel, L., Gratias, D. (eds.) (J. Phys. Colloque), p. c3-9
- Bohr, H.: Fastperiodische Funktionen. Berlin, 1932; and Almost periodic functions. New York: Chelsea Co. 1951
- Besicovitch, A.S.: Almost periodic functions. Cambridge: Cambridge University Press 1932
- de Wolf, P.M., Janssen, T., Janner, A.: Acta Crystallogr. A37, 625 (1981)
- Kramer, P.: Mod. Phys. Lett. B 1, 7-18 (1987) and Int. Mod. Phys. B1,145-165 (1987) (where the imbedding dimension is respectively n = 2 and n = 3). Space-group theory for a non- periodic icosahedral quasilattice, to be published. In: J. Math. Phys. (in this last work, the proof relies on the particular point symmetry)
- Penrose, R.: Math. Intell. 2, 32-37 (1979)
- Rokhsar, D.S., Mermin, N.D., Wright, D.C.: Rudimentary quasicrystallography: the cosahedral and the decagonal reciprocal lattices. Preprint Nov. 1986
- Cartier, P.: C.R. Acad. Sci. Paris 304, II, 798 (1987) Communicated by A. Jaffe Received December 17, 1987