Academia.eduAcademia.edu

Outline

Fatigue and Human Performance: An Updated Framework

Sports Medicine

https://doi.org/10.1007/S40279-022-01748-2

Abstract

Fatigue has been defined differently in the literature depending on the field of research. The inconsistent use of the term fatigue complicated scientific communication, thereby limiting progress towards a more in-depth understanding of the phenomenon. Therefore, Enoka and Duchateau (Med Sci Sports Exerc 48:2228–38, 2016, [3]) proposed a fatigue framework that distinguishes between trait fatigue (i.e., fatigue experienced by an individual over a longer period of time) and motor or cognitive task-induced state fatigue (i.e., self-reported disabling symptom derived from the two interdependent attributes performance fatigability and perceived fatigability). Thereby, performance fatigability describes a decrease in an objective performance measure, while perceived fatigability refers to the sensations that regulate the integrity of the performer. Although this framework served as a good starting point to unravel the psychophysiology of fatigue, several important aspects were not include...

References (211)

  1. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586:11-23. https:// doi. org/ 10. 1113/ jphys iol. 2007. 139477.
  2. Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurol- ogy. 2013;80:409-16. https:// doi. org/ 10. 1212/ WNL. 0b013 e3182 7f07be.
  3. Enoka RM, Duchateau J. Translating fatigue to human perfor- mance. Med Sci Sports Exerc. 2016;48:2228-38. https:// doi. org/ 10. 1249/ MSS. 00000 00000 000929.
  4. Tommasin S, de Luca F, Ferrante I, Gurreri F, Castelli L, Rug- gieri S, et al. Cognitive fatigability is a quantifiable distinct phe- nomenon in multiple sclerosis. J Neuropsychol. 2020;14:370-83. https:// doi. org/ 10. 1111/ jnp. 12197.
  5. Venhorst A, Micklewright D, Noakes TD. Perceived fatigabil- ity: utility of a three-dimensional dynamical systems frame- work to better understand the psychophysiological regulation of goal-directed exercise behaviour. Sports Med. 2018;48:2479-95. https:// doi. org/ 10. 1007/ s40279-018-0986-1.
  6. Braley TJ, Chervin RD. Fatigue in multiple sclerosis: mecha- nisms, evaluation, and treatment. Sleep. 2010;33:1061-7. https:// doi. org/ 10. 1093/ sleep/ 33.8. 1061.
  7. Gruet M. Fatigue in chronic respiratory diseases: theoretical framework and implications for real-life performance and reha- bilitation. Front Physiol. 2018;9:1285. https:// doi. org/ 10. 3389/ fphys. 2018. 01285.
  8. Marrelli K, Cheng AJ, Brophy JD, Power GA. Perceived versus performance fatigability in patients with rheumatoid arthritis. Front Physiol. 2018;9:1395. https:// doi. org/ 10. 3389/ fphys. 2018. 01395.
  9. Müller T, Apps MAJ. Motivational fatigue: a neurocognitive framework for the impact of effortful exertion on subsequent motivation. Neuropsychologia. 2019;123:141-51. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2018. 04. 030.
  10. Genova HM, Rajagopalan V, Deluca J, Das A, Binder A, Arjunan A, et al. Examination of cognitive fatigue in multiple sclero- sis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE. 2013;8: e78811. https:// doi. org/ 10. 1371/ journ al. pone. 00788 11.
  11. Behrens M, Mau-Moeller A, Lischke A, Katlun F, Gube M, Zschorlich V, et al. Mental fatigue increases gait variability dur- ing dual-task walking in old adults. J Gerontol A Biol Sci Med Sci. 2018;73:792-7. https:// doi. org/ 10. 1093/ gerona/ glx210.
  12. Behrens M, Broscheid K-C, Schega L. Taxonomie und Determi- nanten motorischer performance fatigability bei Multipler Skle- rose. NR. 2021;27:3-12. https:// doi. org/ 10. 14624/ NR210 1001.
  13. Micklewright D, St Clair Gibson A, Gladwell V, Al Sal- man A. Development and validity of the rating-of-fatigue scale. Sports Med. 2017;47:2375-93. https:// doi. org/ 10. 1007/ s40279-017-0711-5.
  14. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81:1725-89. https:// doi. org/ 10. 1152/ physr ev. 2001. 81.4. 1725.
  15. Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole-body homeostasis. Front Physiol. 2012;3:82. https:// doi. org/ 10. 3389/ fphys. 2012. 00082.
  16. Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48:2294-306. https:// doi. org/ 10. 1249/ MSS. 00000 00000 000923.
  17. Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol. 1985;2008(104):542-50. https:// doi. org/ 10. 1152/ jappl physi ol. 01053. 2007.
  18. Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 1985;2009(106):857-64. https:// doi. org/ 10. 1152/ jappl physi ol. 91324. 2008.
  19. Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, et al. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol. 2016;594:5303-15. https:// doi. org/ 10. 1113/ JP272 283.
  20. Laurin J, Pertici V, Dousset E, Marqueste T, Decherchi P. Group III and IV muscle afferents: role on central motor drive and clini- cal implications. Neuroscience. 2015;290:543-51. https:// doi. org/ 10. 1016/j. neuro scien ce. 2015. 01. 065.
  21. Boksem MAS, Tops M. Mental fatigue: costs and benefits. Brain Res Rev. 2008;59:125-39. https:// doi. org/ 10. 1016/j. brain resrev. 2008. 07. 001.
  22. Kurzban R. The sense of effort. Curr Opin Psychol. 2016;7:67- 70. https:// doi. org/ 10. 1016/j. copsyc. 2015. 08. 003.
  23. Benoit C-E, Solopchuk O, Borragán G, Carbonnelle A, van Durme S, Zénon A. Cognitive task avoidance correlates with fatigue-induced performance decrement but not with subjective fatigue. Neuropsychologia. 2019;123:30-40. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2018. 06. 017.
  24. Gergelyfi M, Sanz-Arigita EJ, Solopchuk O, Dricot L, Jacob B, Zénon A. Mental fatigue correlates with depression of task- related network and augmented DMN activity but spares the reward circuit. Neuroimage. 2021;243: 118532. https:// doi. org/ 10. 1016/j. neuro image. 2021. 118532.
  25. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287-332. https:// doi. org/ 10. 1152/ physr ev. 00015. 2007.
  26. Cheng AJ, Place N, Westerblad H. Molecular basis for exercise- induced fatigue: the importance of strictly controlled cellular Ca 2+ handling. Cold Spring Harb Perspect Med. 2018. https:// doi. org/ 10. 1101/ cshpe rspect. a0297 10.
  27. Ebenbichler GR, Kollmitzer J, Glckler L, Bochdansky T, Kopf A, Fialka V. The role of the biarticular agonist and cocon- tracting antagonist pair in isometric muscle fatigue. Muscle Nerve. 1998;21:1706-13. https:// doi. org/ 10. 1002/ (sici) 1097- 4598(199812) 21: 12% 3c1706: aid-mus13% 3e3.0. co;2-c.
  28. Gagnon D, Bertrand Arsenault A, Smyth G, Kemp F. Cocontrac- tion changes in muscular fatigue at different levels of isometric contraction. Int J Ind Ergon. 1992;9:343-8. https:// doi. org/ 10. 1016/ 0169-8141(92) 90066-9.
  29. Allen DG, Clugston E, Petersen Y, Röder IV, Chapman B, Rudolf R. Interactions between intracellular calcium and phos- phate in intact mouse muscle during fatigue. J Appl Physiol. 1985;2011(111):358-66. https:// doi. org/ 10. 1152/ jappl physi ol. 01404. 2010.
  30. Westerblad H. Acidosis is not a significant cause of skeletal mus- cle fatigue. Med Sci Sports Exerc. 2016;48:2339-42. https:// doi. org/ 10. 1249/ MSS. 00000 00000 001044.
  31. Hunter SK. Performance fatigability: mechanisms and task speci- ficity. Cold Spring Harb Perspect Med. 2018. https:// doi. org/ 10. 1101/ cshpe rspect. a0297 28.
  32. Nybo L, Rasmussen P, Sawka MN. Performance in the heat- physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4:657-89. https:// doi. org/ 10. 1002/ cphy. c1300 12.
  33. Goodall S, González-Alonso J, Ali L, Ross EZ, Romer LM. Supraspinal fatigue after normoxic and hypoxic exercise in humans. J Physiol. 2012;590:2767-82. https:// doi. org/ 10. 1113/ jphys iol. 2012. 228890.
  34. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35:589-94. https:// doi. org/ 10. 1249/ 01. MSS. 00000 58433. 85789. 66.
  35. Vargas NT, Marino F. A neuroinflammatory model for acute fatigue during exercise. Sports Med. 2014;44:1479-87. https:// doi. org/ 10. 1007/ s40279-014-0232-4.
  36. Skau S, Sundberg K, Kuhn H-G. A proposal for a unifying set of definitions of fatigue. Front Psychol. 2021;12: 739764. https:// doi. org/ 10. 3389/ fpsyg. 2021. 739764.
  37. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the "gold standard." Physiol Rep. 2019;7: e14098. https:// doi. org/ 10. 14814/ phy2. 14098.
  38. Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16:885-94. https:// doi. org/ 10. 1080/ 17461 391. 2016. 11889 92.
  39. Mauger AR. Fatigue is a pain-the use of novel neurophysiologi- cal techniques to understand the fatigue-pain relationship. Front Physiol. 2013;4:104. https:// doi. org/ 10. 3389/ fphys. 2013. 00104.
  40. Ekkekakis P, Hall EE, Petruzzello SJ. Variation and homogeneity in affective responses to physical activity of varying intensities: an alternative perspective on dose-response based on evolution- ary considerations. J Sports Sci. 2005;23:477-500. https:// doi. org/ 10. 1080/ 02640 41040 00214 92.
  41. Hyland-Monks R, Cronin L, McNaughton L, Marchant D. The role of executive function in the self-regulation of endurance per- formance: a critical review. Prog Brain Res. 2018;240:353-70. https:// doi. org/ 10. 1016/ bs. pbr. 2018. 09. 011.
  42. Greenhouse-Tucknott A, Wrightson JG, Raynsford M, Harri- son NA, Dekerle J. Interactions between perceptions of fatigue, effort, and affect decrease knee extensor endurance performance following upper body motor activity, independent of changes in neuromuscular function. Psychophysiology. 2020;57: e13602. https:// doi. org/ 10. 1111/ psyp. 13602.
  43. Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104:929-31. https:// doi. org/ 10. 1007/ s00421-008-0818-3 (author reply 933-5).
  44. Staiano W, Bosio A, de Morree HM, Rampinini E, Marcora S. The cardinal exercise stopper: muscle fatigue, muscle pain or perception of effort? Prog Brain Res. 2018;240:175-200. https:// doi. org/ 10. 1016/ bs. pbr. 2018. 09. 012.
  45. Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 1985;2009(106):2060-2. https:// doi. org/ 10. 1152/ jappl physi ol. 90378. 2008.
  46. Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol. 2010;109:763- 70. https:// doi. org/ 10. 1007/ s00421-010-1418-6.
  47. Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis.
  48. Scand J Med Sci Sports. 2005;15:69-78. https:// doi. org/ 10. 1111/j. 1600-0838. 2005. 00445.x.
  49. McCormick A, Meijen C, Marcora S. Psychological determi- nants of whole-body endurance performance. Sports Med. 2015;45:997-1015. https:// doi. org/ 10. 1007/ s40279-015-0319-6.
  50. Terry PC, Karageorghis CI, Curran ML, Martin OV, Parsons- Smith RL. Effects of music in exercise and sport: a meta-analytic review. Psychol Bull. 2020;146:91-117. https:// doi. org/ 10. 1037/ bul00 00216.
  51. Smirmaul BPC, de Moraes AC, Angius L, Marcora SM. Effects of caffeine on neuromuscular fatigue and performance dur- ing high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol. 2017;117:27-38. https:// doi. org/ 10. 1007/ s00421-016-3496-6.
  52. Husmann F, Bruhn S, Mittlmeier T, Zschorlich V, Behrens M. Dietary nitrate supplementation improves exercise tolerance by reducing muscle fatigue and perceptual responses. Front Physiol. 2019;10:404. https:// doi. org/ 10. 3389/ fphys. 2019. 00404.
  53. Behrens M, Zschorlich V, Mittlmeier T, Bruhn S, Husmann F. Ischemic preconditioning did not affect central and peripheral factors of performance fatigability after submaximal isometric exercise. Front Physiol. 2020;11:371. https:// doi. org/ 10. 3389/ fphys. 2020. 00371.
  54. Nybo L, Nielsen B. Hyperthermia and central fatigue during pro- longed exercise in humans. J Appl Physiol. 1985;2001(91):1055- 60. https:// doi. org/ 10. 1152/ jappl. 2001. 91.3. 1055.
  55. Barley OR, Chapman DW, Blazevich AJ, Abbiss CR. Acute dehydration impairs endurance without modulating neuromus- cular function. Front Physiol. 2018;9:1562. https:// doi. org/ 10. 3389/ fphys. 2018. 01562.
  56. Romer LM, Haverkamp HC, Amann M, Lovering AT, Pegelow DF, Dempsey JA. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2007;292:R598-606. https:// doi. org/ 10. 1152/ ajpre gu. 00269. 2006.
  57. Temesi J, Arnal PJ, Davranche K, Bonnefoy R, Levy P, Verges S, Millet GY. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45:2243-53. https:// doi. org/ 10. 1249/ MSS. 0b013 e3182 9ce379.
  58. Astokorki AHY, Mauger AR. Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance. Eur J Appl Physiol. 2017;117:483-92. https:// doi. org/ 10. 1007/ s00421-016-3532-6.
  59. Smith SA, Micklewright D, Winter SL, Mauger AR. Mus- cle pain induced by hypertonic saline in the knee extensors decreases single-limb isometric time to task failure. Eur J Appl Physiol. 2020;120:2047-58. https:// doi. org/ 10. 1007/ s00421-020-04425-2.
  60. Hartman ME, Ekkekakis P, Dicks ND, Pettitt RW. Dynamics of pleasure-displeasure at the limit of exercise tolerance: concep- tualizing the sense of exertional physical fatigue as an affective response. J Exp Biol. 2019. https:// doi. org/ 10. 1242/ jeb. 186585.
  61. Ekkekakis P, Zenko Z. Measurement of affective responses to exercise. In: Emotion measurement. Amsterdam: Elsevier; 2016. p. 299-321. https:// doi. org/ 10. 1016/ B978-0-08-100508- 8. 00012-6.
  62. Craig AD. How do you feel? Interoception: the sense of the phys- iological condition of the body. Nat Rev Neurosci. 2002;3:655- 66. https:// doi. org/ 10. 1038/ nrn894.
  63. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF. The brain basis of positive and negative affect: evidence from a meta- analysis of the human neuroimaging literature. Cereb Cortex. 2016;26:1910-22. https:// doi. org/ 10. 1093/ cercor/ bhv001.
  64. Roloff ZA, Dicks ND, Krynski LM, Hartman ME, Ekkekakis P, Pettitt RW. Ratings of affective valence closely track changes in oxygen uptake: application to high-intensity interval exercise. Perform Enhance Health. 2020;7: 100158. https:// doi. org/ 10. 1016/j. peh. 2020. 100158.
  65. Milyavskaya M, Berkman ET, de Ridder DTD. The many faces of self-control: tacit assumptions and recommendations to deal with them. Motiv Sci. 2019;5:79-85. https:// doi. org/ 10. 1037/ mot00 00108.
  66. Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends Cogn Sci. 2014;18:127-33. https:// doi. org/ 10. 1016/j. tics. 2013. 12. 009.
  67. Diamond A. Executive functions. Annu Rev Psy- chol. 2013;64:135-68. https:// doi. org/ 10. 1146/ annur ev-psych-113011-143750.
  68. Angius L, Santarnecchi E, Pascual-Leone A, Marcora SM. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance per- formance in healthy individuals. Neuroscience. 2019;419:34-45. https:// doi. org/ 10. 1016/j. neuro scien ce. 2019. 08. 052.
  69. Judge M, Hopker J, Mauger AR. The effect of tDCS applied to the dorsolateral prefrontal cortex on cycling performance and the modulation of exercise induced pain. Neurosci Lett. 2021;743: 135584. https:// doi. org/ 10. 1016/j. neulet. 2020. 135584.
  70. Behm DG, Carter TB. Effect of exercise-related factors on the perception of time. Front Physiol. 2020;11:770. https:// doi. org/ 10. 3389/ fphys. 2020. 00770.
  71. Hunter SK. Sex differences and mechanisms of task-specific mus- cle fatigue. Exerc Sport Sci Rev. 2009;37:113-22. https:// doi. org/ 10. 1097/ JES. 0b013 e3181 aa63e2.
  72. Hunter SK, Pereira HM, Keenan KG. The aging neuro- muscular system and motor performance. J Appl Physiol. 1985;2016(121):982-95. https:// doi. org/ 10. 1152/ jappl physi ol. 00475. 2016.
  73. Zghal F, Cottin F, Kenoun I, Rebaï H, Moalla W, Dogui M, et al. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol. 2015;115:1401-15. https:// doi. org/ 10. 1007/ s00421-015-3123-y.
  74. O'Leary TJ, Collett J, Howells K, Morris MG. Endurance capac- ity and neuromuscular fatigue following high-vs moderate-inten- sity endurance training: a randomized trial. Scand J Med Sci Sports. 2017;27:1648-61. https:// doi. org/ 10. 1111/ sms. 12854.
  75. Nilwik R, Snijders T, Leenders M, Groen BBL, van Kranenburg J, Verdijk LB, van Loon LJC. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48:492-8. https:// doi. org/ 10. 1016/j. exger. 2013. 02. 012.
  76. Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, et al. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol. 2014;114:29-39. https:// doi. org/ 10. 1007/ s00421-013-2728-2.
  77. Mau-Moeller A, Behrens M, Lindner T, Bader R, Bruhn S. Age-related changes in neuromuscular function of the quadri- ceps muscle in physically active adults. J Electromyogr Kinesiol. 2013;23:640-8. https:// doi. org/ 10. 1016/j. jelek in. 2013. 01. 009.
  78. Sundberg CW, Prost RW, Fitts RH, Hunter SK. Bioenergetic basis for the increased fatigability with ageing. J Physiol. 2019;597:4943-57. https:// doi. org/ 10. 1113/ JP277 803.
  79. Sundberg CW, Kuplic A, Hassanlouei H, Hunter SK. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults. J Appl Physiol. 1985;2018(125):146-58. https:// doi. org/ 10. 1152/ jappl physi ol. 01141. 2017.
  80. Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Howatson G, Thomas K, et al. Sex differences in fatigability and recov- ery relative to the intensity-duration relationship. J Physiol. 2019;597:5577-95. https:// doi. org/ 10. 1113/ JP278 699.
  81. Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, et al. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol. 2020;598:5717-37. https:// doi. org/ 10. 1113/ JP280 031.
  82. Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Phys- iol. 2020;105:2007-21. https:// doi. org/ 10. 1113/ EP088 548.
  83. Zijdewind I, Hyngstrom A, Hunter S. Editorial: fatigability and motor performance in special and clinical populations. Front Physiol. 2020;11: 570861. https:// doi. org/ 10. 3389/ fphys. 2020. 570861.
  84. Zijdewind I, Prak RF, Wolkorte R. Fatigue and fatigability in per- sons with multiple sclerosis. Exerc Sport Sci Rev. 2016;44:123- 8. https:// doi. org/ 10. 1249/ JES. 00000 00000 000088.
  85. Ellison PM, Goodall S, Kennedy N, Dawes H, Clark A, Pomeroy V, et al. Neurostructural and neurophysiological correlates of multiple sclerosis physical fatigue: systematic review and meta- analysis of cross-sectional studies. Neuropsychol Rev. 2021. https:// doi. org/ 10. 1007/ s11065-021-09508-1.
  86. Senefeld J, Magill SB, Harkins A, Harmer AR, Hunter SK. Mech- anisms for the increased fatigability of the lower limb in people with type 2 diabetes. J Appl Physiol. 1985;2018(125):553-66. https:// doi. org/ 10. 1152/ jappl physi ol. 00160. 2018.
  87. Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23:1727-35. https:// doi. org/ 10. 1002/ 1097-4598(200011) 23: 11% 3c1727: AID-MUS9% 3e3.0. CO;2-Y.
  88. Morel B, Clémençon M, Rota S, Millet GY, Bishop DJ, Brosseau O, et al. Contraction velocity influence the magnitude and etiol- ogy of neuromuscular fatigue during repeated maximal contrac- tions. Scand J Med Sci Sports. 2015;25:e432-41. https:// doi. org/ 10. 1111/ sms. 12358.
  89. Rossman MJ, Garten RS, Venturelli M, Amann M, Richardson RS. The role of active muscle mass in determining the magni- tude of peripheral fatigue during dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2014;306:R934-40. https:// doi. org/ 10. 1152/ ajpre gu. 00043. 2014.
  90. Thomas K, Elmeua M, Howatson G, Goodall S. Intensity- dependent contribution of neuromuscular fatigue after constant- load cycling. Med Sci Sports Exerc. 2016;48:1751-60. https:// doi. org/ 10. 1249/ MSS. 00000 00000 000950.
  91. Ducrocq GP, Hureau TJ, Bøgseth T, Meste O, Blain GM. Recov- ery from fatigue after cycling time trials in elite endurance ath- letes. Med Sci Sports Exerc. 2021;53:904-17. https:// doi. org/ 10. 1249/ MSS. 00000 00000 002557.
  92. Smith ICH, Di Newham J. Fatigue and functional performance of human biceps muscle following concentric or eccentric contrac- tions. J Appl Physiol. 1985;2007(102):207-13. https:// doi. org/ 10. 1152/ jappl physi ol. 00571. 2006.
  93. Prasartwuth O, Allen TJ, Butler JE, Gandevia SC, Taylor JL. Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. J Physiol. 2006;571:243-52. https:// doi. org/ 10. 1113/ jphys iol. 2005. 101600.
  94. Behrens M, Mau-Moeller A, Bruhn S. Effect of exercise-induced muscle damage on neuromuscular function of the quadriceps muscle. Int J Sports Med. 2012;33:600-6. https:// doi. org/ 10. 1055/s-0032-13046 42.
  95. Goodall S, Thomas K, Barwood M, Keane K, Gonzalez JT, St Clair Gibson A, Howatson G. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise. Acta Physiol (Oxf). 2017;220:486-500. https:// doi. org/ 10. 1111/ apha. 12844.
  96. Husmann F, Gube M, Felser S, Weippert M, Mau-Moeller A, Bruhn S, Behrens M. Central factors contribute to knee extensor strength loss after 2000-m rowing in elite male and female row- ers. Med Sci Sports Exerc. 2017;49:440-9. https:// doi. org/ 10. 1249/ MSS. 00000 00000 001133.
  97. Sidney KH, Shephard RJ. Perception of exertion in the elderly, effects of aging, mode of exercise and physical training. Percept Mot Skills. 1977;44:999-1010. https:// doi. org/ 10. 2466/ pms. 1977. 44.3. 999.
  98. Groslambert A, Grange CC, Perrey S, Maire J, Tordi N, Rouil- lon JD. Effects of aging on perceived exertion and pain during arm cranking in women 70 to 80 years old. J Sports Sci Med. 2006;5:208-14.
  99. Ofir D, Laveneziana P, Webb KA, Lam Y-M, O'Donnell DE. Sex differences in the perceived intensity of breathless- ness during exercise with advancing age. J Appl Physiol. 1985;2008(104):1583-93. https:// doi. org/ 10. 1152/ jappl physi ol. 00079. 2008.
  100. Tomporowski PD. Men's and women's perceptions of effort dur- ing progressive-resistance strength training. Percept Mot Skills. 2001;92:368-72. https:// doi. org/ 10. 2466/ pms. 2001. 92.2. 368.
  101. Yoon T, Keller ML, De-Lap BS, Harkins A, Lepers R, Hunter SK. Sex differences in response to cognitive stress during a fatiguing contraction. J Appl Physiol. 1985;2009(107):1486-96. https:// doi. org/ 10. 1152/ jappl physi ol. 00238. 2009.
  102. Cook DB, O'Connor PJ, Oliver SE, Lee Y. Sex differences in naturally occurring leg muscle pain and exertion during maximal cycle ergometry. Int J Neurosci. 1998;95:183-202. https:// doi. org/ 10. 3109/ 00207 45980 90033 40.
  103. Severijns D, Lemmens M, Thoelen R, Feys P. Motor fatigability after low-intensity hand grip exercises in persons with multiple sclerosis. Mult Scler Relat Disord. 2016;10:7-13. https:// doi. org/ 10. 1016/j. msard. 2016. 08. 007.
  104. Thickbroom GW, Sacco P, Kermode AG, Archer SA, Byrnes ML, Guilfoyle A, Mastaglia FL. Central motor drive and perception of effort during fatigue in multiple sclerosis. J Neurol. 2006;253:1048-53. https:// doi. org/ 10. 1007/ s00415-006-0159-2.
  105. Borg G, Linderholm H. Exercise performance and perceived exertion in patients with coronary insufficiency, arterial hypertension and vasoregulatory asthenia. Acta Med Scand. 1970;187:17-26. https:// doi. org/ 10. 1111/j. 0954-6820. 1970. tb029 01.x.
  106. Huebschmann AG, Reis EN, Emsermann C, Dickinson LM, Reusch JEB, Bauer TA, Regensteiner JG. Women with type 2 diabetes perceive harder effort during exercise than nondiabetic women. Appl Physiol Nutr Metab. 2009;34:851-7. https:// doi. org/ 10. 1139/ H09-074.
  107. Mengshoel AM, Vøllestad NK, Førre O. Pain and fatigue induced by exercise in fibromyalgia patients and sedentary healthy sub- jects. Clin Exp Rheumatol. 1995;13:477-82.
  108. Hollander DB, Durand RJ, Trynicki JL, Larock D, Castracane VD, Hebert EP, Kraemer RR. RPE, pain, and physiological adjustment to concentric and eccentric contractions. Med Sci Sports Exerc. 2003;35:1017-25. https:// doi. org/ 10. 1249/ 01. MSS. 00000 69749. 13258. 4E.
  109. Zhang J, Iannetta D, Alzeeby M, MacInnis MJ, Aboodarda SJ. Exercising muscle mass influences neuromuscular, cardiorespira- tory, and perceptual responses during and following ramp incre- mental cycling to task failure. Am J Physiol Regul Integr Comp Physiol. 2021. https:// doi. org/ 10. 1152/ ajpre gu. 00286. 2020.
  110. Backhouse SH, Biddle SJH, Bishop NC, Williams C. Caf- feine ingestion, affect and perceived exertion during prolonged cycling. Appetite. 2011;57:247-52. https:// doi. org/ 10. 1016/j. appet. 2011. 05. 304.
  111. Robertson CV, Marino FE. A role for the prefrontal cor- tex in exercise tolerance and termination. J Appl Physiol. 1985;2016(120):464-6. https:// doi. org/ 10. 1152/ jappl physi ol. 00363. 2015.
  112. Linnhoff S, Fiene M, Heinze H-J, Zaehle T. Cognitive fatigue in multiple sclerosis: an objective approach to diagnosis and treatment by transcranial electrical stimulation. Brain Sci. 2019. https:// doi. org/ 10. 3390/ brain sci90 50100.
  113. Wang C, Ding M, Kluger BM. Change in intraindividual vari- ability over time as a key metric for defining performance-based cognitive fatigability. Brain Cogn. 2014;85:251-8. https:// doi. org/ 10. 1016/j. bandc. 2014. 01. 004.
  114. Terentjeviene A, Maciuleviciene E, Vadopalas K, Mickeviciene D, Karanauskiene D, Valanciene D, et al. Prefrontal cortex activ- ity predicts mental fatigue in young and elderly men during a 2 h "Go/NoGo" task. Front Neurosci. 2018;12:620. https:// doi. org/ 10. 3389/ fnins. 2018. 00620.
  115. Jaydari Fard S, Lavender AP. A comparison of task-based men- tal fatigue between healthy males and females. Fatigue Biomed Health Behav. 2019;7:1-11. https:// doi. org/ 10. 1080/ 21641 846. 2019. 15625 82.
  116. DeLuca GC, Ebers GC, Esiri MM. Axonal loss in multiple scle- rosis: a pathological survey of the corticospinal and sensory tracts. Brain. 2004;127:1009-18. https:// doi. org/ 10. 1093/ brain/ awh118.
  117. Hopstaken JF, van der Linden D, Bakker AB, Kompier MAJ. A multifaceted investigation of the link between mental fatigue and task disengagement. Psychophysiology. 2015;52:305-15. https:// doi. org/ 10. 1111/ psyp. 12339.
  118. Borragán G, Slama H, Bartolomei M, Peigneux P. Cogni- tive fatigue: a time-based resource-sharing account. Cortex. 2017;89:71-84. https:// doi. org/ 10. 1016/j. cortex. 2017. 01. 023.
  119. Smith MR, Chai R, Nguyen HT, Marcora SM, Coutts AJ. Com- paring the effects of three cognitive tasks on indicators of men- tal fatigue. J Psychol. 2019;153:759-83. https:// doi. org/ 10. 1080/ 00223 980. 2019. 16115 30.
  120. Hockey GRJ. A motivational control theory of cognitive fatigue. In: Ackerman PL, editor. Cognitive fatigue: multidisciplinary perspectives on current research and future applications. 1st ed. Washington, DC: American Psychological Association; 2011. p. 167-187. https:// doi. org/ 10. 1037/ 12343-008.
  121. Nakagawa S, Sugiura M, Akitsuki Y, Hosseini SMH, Kotozaki Y, Miyauchi CM, et al. Compensatory effort parallels midbrain deactivation during mental fatigue: an fMRI study. PLoS ONE. 2013;8: e56606. https:// doi. org/ 10. 1371/ journ al. pone. 00566 06.
  122. Esposito F, Otto T, Zijlstra FRH, Goebel R. Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS ONE. 2014;9: e94222. https:// doi. org/ 10. 1371/ journ al. pone. 00942 22.
  123. Pergher V, Vanbilsen N, van Hulle M. The effect of mental fatigue and gender on working memory performance dur- ing repeated practice by young and older adults. Neural Plast. 2021;2021:6612805. https:// doi. org/ 10. 1155/ 2021/ 66128 05.
  124. Herlambang MB, Taatgen NA, Cnossen F. The role of motivation as a factor in mental fatigue. Hum Factors. 2019;61:1171-85. https:// doi. org/ 10. 1177/ 00187 20819 828569.
  125. Moeller SJ, Tomasi D, Honorio J, Volkow ND, Goldstein RZ. Dopaminergic involvement during mental fatigue in health and cocaine addiction. Transl Psychiatry. 2012;2: e176. https:// doi. org/ 10. 1038/ tp. 2012. 110.
  126. Lorist MM, Bezdan E, ten Caat M, Span MM, Roerdink JBTM, Maurits NM. The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Res. 2009;1270:95-106. https:// doi. org/ 10. 1016/j. brain res. 2009. 03. 015.
  127. Gergelyfi M, Jacob B, Olivier E, Zénon A. Dissociation between mental fatigue and motivational state during prolonged mental activity. Front Behav Neurosci. 2015;9:176. https:// doi. org/ 10. 3389/ fnbeh. 2015. 00176.
  128. Zénon A, Solopchuk O, Pezzulo G. An information-theoretic perspective on the costs of cognition. Neuropsychologia. 2019;123:5-18. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2018. 09. 013.
  129. Blain B, Hollard G, Pessiglione M. Neural mechanisms underly- ing the impact of daylong cognitive work on economic decisions. Proc Natl Acad Sci USA. 2016;113:6967-72. https:// doi. org/ 10. 1073/ pnas. 15205 27113.
  130. Lim J, Ebstein R, Tse C-Y, Monakhov M, Lai PS, Dinges DF, Kwok K. Dopaminergic polymorphisms associated with time- on-task declines and fatigue in the Psychomotor Vigilance Test. PLoS ONE. 2012;7: e33767. https:// doi. org/ 10. 1371/ journ al. pone. 00337 67.
  131. Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental fatigue impairs endurance performance: a physiological explanation. Sports Med. 2018;48:2041-51. https:// doi. org/ 10. 1007/ s40279-018-0946-9.
  132. Christie ST, Schrater P. Cognitive cost as dynamic allocation of energetic resources. Front Neurosci. 2015;9:289. https:// doi. org/ 10. 3389/ fnins. 2015. 00289.
  133. Wang C, Trongnetrpunya A, Samuel IBH, Ding M, Kluger BM. Compensatory neural activity in response to cognitive fatigue. J Neurosci. 2016;36:3919-24. https:// doi. org/ 10. 1523/ JNEUR OSCI. 3652-15. 2016.
  134. Qian S, Li M, Li G, Liu K, Li B, Jiang Q, et al. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study. Behav Brain Res. 2015;280:6-15. https:// doi. org/ 10. 1016/j. bbr. 2014. 11. 036.
  135. Massar SAA, Lim J, Huettel SA. Sleep deprivation, effort alloca- tion and performance. Prog Brain Res. 2019;246:1-26. https:// doi. org/ 10. 1016/ bs. pbr. 2019. 03. 007. 135. van Cutsem J, de Pauw K, Marcora S, Meeusen R, Roelands B. A caffeine-maltodextrin mouth rinse counters mental fatigue. Psychopharmacology. 2018;235:947-58. https:// doi. org/ 10. 1007/ s00213-017-4809-0.
  136. Boksem MAS, Meijman TF, Lorist MM. Mental fatigue, moti- vation and action monitoring. Biol Psychol. 2006;72:123-32. https:// doi. org/ 10. 1016/j. biops ycho. 2005. 08. 007.
  137. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, Botvinick MM. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40:99-124. https:// doi. org/ 10. 1146/ annur ev-neuro-072116-031526.
  138. Crewe H, Tucker R, Noakes TD. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur J Appl Physiol. 2008;103:569-77. https:// doi. org/ 10. 1007/ s00421-008-0741-7.
  139. Tucker R. The anticipatory regulation of performance: the physi- ological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43:392-400. https:// doi. org/ 10. 1136/ bjsm. 2008. 050799.
  140. Tucker R, Noakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009. https:// doi. org/ 10. 1136/ bjsm. 2009. 057562.
  141. Hockey R. The psychology of fatigue: work, effort, and control. Cambridge: Cambridge University Press; 2013.
  142. Kurzban R, Duckworth A, Kable JW, Myers J. An opportunity cost model of subjective effort and task performance. Behav Brain Sci. 2013;36:661-79. https:// doi. org/ 10. 1017/ S0140 525X1 20031 96.
  143. Inzlicht M, Shenhav A, Olivola CY. The effort paradox: effort is both costly and valued. Trends Cogn Sci. 2018;22:337-49. https:// doi. org/ 10. 1016/j. tics. 2018. 01. 007.
  144. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010;14:172-9. https:// doi. org/ 10. 1016/j. tics. 2010. 01. 004.
  145. Power JD, Petersen SE. Control-related systems in the human brain. Curr Opin Neurobiol. 2013;23:223-8. https:// doi. org/ 10. 1016/j. conb. 2012. 12. 009.
  146. Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex func- tion. Neuron. 2013;79:217-40. https:// doi. org/ 10. 1016/j. neuron. 2013. 07. 007.
  147. Hocking C, Silberstein RB, Lau WM, Stough C, Roberts W. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol A Mol Integr Physiol. 2001;128:719-34. https:// doi. org/ 10. 1016/ S1095-6433(01) 00278-1.
  148. Silvestrini N. Psychological and neural mechanisms associated with effort-related cardiovascular reactivity and cognitive con- trol: an integrative approach. Int J Psychophysiol. 2017;119:11- 8. https:// doi. org/ 10. 1016/j. ijpsy cho. 2016. 12. 009.
  149. Hoshikawa Y, Yamamoto Y. Effects of Stroop color-word conflict test on the autonomic nervous system responses. Am J Physiol. 1997;272:H1113-21. https:// doi. org/ 10. 1152/ ajphe art. 1997. 272.3. H1113.
  150. van der Wel P, van Steenbergen H. Pupil dilation as an index of effort in cognitive control tasks: a review. Psychon Bull Rev. 2018;25:2005-15. https:// doi. org/ 10. 3758/ s13423-018-1432-y.
  151. Saunders B, Inzlicht M. Vigour and fatigue: How variation in affect underlies effective self-control. In: Motivation and cogni- tive control. p. 211-34.
  152. Carver CS, Scheier MF. Origins and functions of positive and negative affect: a control-process view. Psychol Rev. 1990;97:19- 35. https:// doi. org/ 10. 1037/ 0033-295X. 97.1. 19.
  153. Baumeister RF, Tice DM, Vohs KD. The strength model of self- regulation: conclusions from the second decade of willpower research. Perspect Psychol Sci. 2018;13:141-5. https:// doi. org/ 10. 1177/ 17456 91617 716946.
  154. Inzlicht M, Werner KM, Briskin JL, Roberts BW. Integrating models of self-regulation. Annu Rev Psychol. 2021;72:319-45. https:// doi. org/ 10. 1146/ annur ev-psych-061020-105721.
  155. Saunders B, Milyavskaya M, Inzlicht M. What does cognitive control feel like? Effective and ineffective cognitive control is associated with divergent phenomenology. Psychophysiology. 2015;52:1205-17. https:// doi. org/ 10. 1111/ psyp. 12454.
  156. Milyavskaya M, Galla BM, Inzlicht M, Duckworth AL. More effort, less fatigue: the role of interest in increasing effort and reducing mental fatigue. Front Psychol. 2021;12: 755858. https:// doi. org/ 10. 3389/ fpsyg. 2021. 755858.
  157. Milyavskaya M, Inzlicht M, Johnson T, Larson MJ. Reward sensitivity following boredom and cognitive effort: a high- powered neurophysiological investigation. Neuropsychologia. 2019;123:159-68. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2018. 03. 033.
  158. Mangin T, André N, Benraiss A, Pageaux B, Audiffren M. No ego-depletion effect without a good control task. Psychol Sport Exerc. 2021;57: 102033. https:// doi. org/ 10. 1016/j. psych sport. 2021. 102033.
  159. Evans DR, Boggero IA, Segerstrom SC. The nature of self- regulatory fatigue and "Ego Depletion": lessons from physical fatigue. Pers Soc Psychol Rev. 2016;20:291-310. https:// doi. org/ 10. 1177/ 10888 68315 597841.
  160. Shen J, Barbera J, Shapiro CM. Distinguishing sleepiness and fatigue: focus on definition and measurement. Sleep Med Rev. 2006;10:63-76. https:// doi. org/ 10. 1016/j. smrv. 2005. 05. 004.
  161. Goodman SPJ, Marino FE. Thirst perception exacerbates objec- tive mental fatigue. Neuropsychologia. 2021;150: 107686. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2020. 107686.
  162. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29:737-52. https:// doi. org/ 10. 1016/j. cger. 2013. 07. 002.
  163. Murman DL. The impact of age on cognition. Semin Hear. 2015;36:111-21. https:// doi. org/ 10. 1055/s-0035-15551 15.
  164. Emery L, Heaven TJ, Paxton JL, Braver TS. Age-related changes in neural activity during performance matched working memory manipulation. Neuroimage. 2008;42:1577-86. https:// doi. org/ 10. 1016/j. neuro image. 2008. 06. 021.
  165. Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH. Males and females differ in brain activation during cognitive tasks. Neuroimage. 2006;30:529-38. https:// doi. org/ 10. 1016/j. neuro image. 2005. 09. 049.
  166. Wang J, Korczykowski M, Rao H, Fan Y, Pluta J, Gur RC, et al. Gender difference in neural response to psychological stress. Soc Cogn Affect Neurosci. 2007;2:227-39. https:// doi. org/ 10. 1093/ scan/ nsm018.
  167. Noreika D, Griškova-Bulanova I, Alaburda A, Baranauskas M, Grikšienė R. Progesterone and mental rotation task: is there any effect? Biomed Res Int. 2014;2014: 741758. https:// doi. org/ 10. 1155/ 2014/ 741758.
  168. Schwid SR, Tyler CM, Scheid EA, Weinstein A, Goodman AD, McDermott MP. Cognitive fatigue during a test requiring sus- tained attention: a pilot study. Mult Scler. 2003;9:503-8. https:// doi. org/ 10. 1191/ 13524 58503 ms946 oa.
  169. Deluca J. Fatigue as a window to the brain. Cambridge: MIT Press; 2005.
  170. Deluca J, Genova HM, Hillary FG, Wylie G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci. 2008;270:28-39. https:// doi. org/ 10. 1016/j. jns. 2008. 01. 018.
  171. Johnson SK, Lange G, DeLuca J, Korn LR, Natelson B. The effects of fatigue on neuropsychological performance in patients with chronic fatigue syndrome, multiple sclerosis, and depres- sion. Appl Neuropsychol. 1997;4:145-53. https:// doi. org/ 10. 1207/ s1532 4826a n0403_1.
  172. Kohl AD, Wylie GR, Genova HM, Hillary FG, DeLuca J. The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj. 2009;23:420-32. https:// doi. org/ 10. 1080/ 02699 05090 27885 19.
  173. Bryant D, Chiaravalloti ND, Deluca J. Objective measurement of cognitive fatigue in multiple sclerosis. Rehabil Psychol. 2004;49:114-22. https:// doi. org/ 10. 1037/ 0090-5550. 49.2. 114.
  174. Walker LAS, Berard JA, Berrigan LI, Rees LM, Freedman MS. Detecting cognitive fatigue in multiple sclerosis: method matters. J Neurol Sci. 2012;316:86-92. https:// doi. org/ 10. 1016/j. jns. 2012. 01. 021.
  175. Spiteri S, Hassa T, Claros-Salinas D, Dettmers C, Schoenfeld MA. Neural correlates of effort-dependent and effort-independ- ent cognitive fatigue components in patients with multiple scle- rosis. Mult Scler. 2019;25:256-66. https:// doi. org/ 10. 1177/ 13524 58517 743090.
  176. Varas-Diaz G, Kannan L, Bhatt T. Effect of mental fatigue on postural sway in healthy older adults and stroke populations. Brain Sci. 2020. https:// doi. org/ 10. 3390/ brain sci10 060388.
  177. Jordan B, Schweden TLK, Mehl T, Menge U, Zierz S. Cogni- tive fatigue in patients with myasthenia gravis. Muscle Nerve. 2017;56:449-57. https:// doi. org/ 10. 1002/ mus. 25540.
  178. O'Keeffe K, Hodder S, Lloyd A. A comparison of methods used for inducing mental fatigue in performance research: individual- ised, dual-task and short duration cognitive tests are most effec- tive. Ergonomics. 2020;63:1-12. https:// doi. org/ 10. 1080/ 00140 139. 2019. 16879 40.
  179. Shashidhara S, Mitchell DJ, Erez Y, Duncan J. Progressive recruitment of the frontoparietal multiple-demand system with increased task complexity, time pressure, and reward. J Cogn Neurosci. 2019;31:1617-30. https:// doi. org/ 10. 1162/ jocn_a_ 01440.
  180. Shigihara Y, Tanaka M, Ishii A, Kanai E, Funakura M, Watanabe Y. Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways. Behav Brain Funct. 2013;9:2. https:// doi. org/ 10. 1186/ 1744-9081-9-2.
  181. Käthner I, Wriessnegger SC, Müller-Putz GR, Kübler A, Halder S. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain- computer interface. Biol Psychol. 2014;102:118-29. https:// doi. org/ 10. 1016/j. biops ycho. 2014. 07. 014.
  182. Wascher E, Heppner H, Kobald SO, Arnau S, Getzmann S, Möckel T. Age-sensitive effects of enduring work with alternat- ing cognitive and physical load. A study applying mobile EEG in a real-life working scenario. Front Hum Neurosci. 2015;9:711. https:// doi. org/ 10. 3389/ fnhum. 2015. 00711.
  183. Di Giacomo D, Ranieri J, D'Amico M, Guerra F, Passafiume D. Psychological barriers to digital living in older adults: computer anxiety as predictive mechanism for technophobia. Behav Sci (Basel). 2019. https:// doi. org/ 10. 3390/ bs909 0096.
  184. Lopes TR, Oliveira DM, Simurro PB, Akiba HT, Nakamura FY, Okano AH, et al. No sex difference in mental fatigue effect on high-level runners' aerobic performance. Med Sci Sports Exerc. 2020;52:2207-16. https:// doi. org/ 10. 1249/ MSS. 00000 00000 002346.
  185. Sandry J, Genova HM, Dobryakova E, Deluca J, Wylie G. Sub- jective cognitive fatigue in multiple sclerosis depends on task length. Front Neurol. 2014;5:214. https:// doi. org/ 10. 3389/ fneur. 2014. 00214.
  186. Chatain C, Radel R, Vercruyssen F, Rabahi T, Vallier J-M, Ber- nard T, Gruet M. Influence of cognitive load on the dynamics of neurophysiological adjustments during fatiguing exercise. Psy- chophysiology. 2019;56: e13343. https:// doi. org/ 10. 1111/ psyp. 13343.
  187. Millet GY, Martin V, Martin A, Vergès S. Electrical stimula- tion for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol. 2011;111:2489-500. https:// doi. org/ 10. 1007/ s00421-011-1996-y.
  188. Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:1197-206. https:// doi. org/ 10. 1016/ s0021-9290(00) 00064-6.
  189. Contessa P, Adam A, de Luca CJ. Motor unit control and force fluctuation during fatigue. J Appl Physiol. 1985;2009(107):235- 43. https:// doi. org/ 10. 1152/ jappl physi ol. 00035. 2009.
  190. Shema-Shiratzky S, Gazit E, Sun R, Regev K, Karni A, Sos- noff JJ, et al. Deterioration of specific aspects of gait during the instrumented 6-min walk test among people with multiple sclerosis. J Neurol. 2019;266:3022-30. https:// doi. org/ 10. 1007/ s00415-019-09500-z.
  191. Rooks CR, Thom NJ, McCully KK, Dishman RK. Effects of incremental exercise on cerebral oxygenation measured by near- infrared spectroscopy: a systematic review. Prog Neurobiol. 2010;92:134-50. https:// doi. org/ 10. 1016/j. pneur obio. 2010. 06. 002.
  192. de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 1985;2014(117):1514-23. https:// doi. org/ 10. 1152/ jappl physi ol. 00898. 2013.
  193. Fontes EB, Bortolotti H, Da Grandjean Costa K, Machado de Campos B, Castanho GK, Hohl R, et al. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br J Sports Med. 2020;54:110-5. https:// doi. org/ 10. 1136/ bjspo rts-2018-100295.
  194. Ferrari M, Muthalib M, Quaresima V. The use of near-infra- red spectroscopy in understanding skeletal muscle physiol- ogy: recent developments. Philos Trans A Math Phys Eng Sci. 2011;369:4577-90. https:// doi. org/ 10. 1098/ rsta. 2011. 0230.
  195. Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31 P magnetic resonance spectroscopy in skeletal muscle: experts' consensus recommendations. NMR Biomed. 2020. https:// doi. org/ 10. 1002/ nbm. 4246.
  196. Bigliassi M, Karageorghis CI, Nowicky AV, Orgs G, Wright MJ. Cerebral mechanisms underlying the effects of music during a fatiguing isometric ankle-dorsiflexion task. Psychophysiology. 2016;53:1472-83. https:// doi. org/ 10. 1111/ psyp. 12693.
  197. Brick NE, MacIntyre TE, Campbell MJ. Thinking and action: a cognitive perspective on self-regulation during endurance perfor- mance. Front Physiol. 2016;7:159. https:// doi. org/ 10. 3389/ fphys. 2016. 00159.
  198. Tempest GD, Davranche K, Brisswalter J, Perrey S, Radel R. The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain Cogn. 2017;113:133-41. https:// doi. org/ 10. 1016/j. bandc. 2017. 02. 001.
  199. Ackerman PL, Kanfer R, Shapiro SW, Newton S, Beier ME. Cognitive fatigue during testing: an examination of trait, time-on-task, and strategy influences. Hum Perform. 2010;23:381-402. https:// doi. org/ 10. 1080/ 08959 285. 2010. 517720.
  200. Fan J, Smith AP. The Impact of Workload and Fatigue on Per- formance. In: Longo L, Leva MC, editors. Human mental work- load: models and applications: First International Symposium, H-WORKLOAD 2017, Dublin, Ireland, June 28-30, 2017: revised selected papers. Cham: Springer; 2017. p. 90-105. doi:https:// doi. org/ 10. 1007/ 978-3-319-61061-0_6.
  201. Persson J, Welsh KM, Jonides J, Reuter-Lorenz PA. Cognitive fatigue of executive processes: interaction between interference resolution tasks. Neuropsychologia. 2007;45:1571-9. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2006. 12. 007.
  202. Hanken K, Bosse M, Möhrke K, Eling P, Kastrup A, Antal A, Hildebrandt H. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation. Front Neurol. 2016;7:154. https:// doi. org/ 10. 3389/ fneur. 2016. 00154.
  203. Fiene M, Rufener KS, Kuehne M, Matzke M, Heinze H-J, Zaehle T. Electrophysiological and behavioral effects of frontal transcra- nial direct current stimulation on cognitive fatigue in multiple sclerosis. J Neurol. 2018;265:607-17. https:// doi. org/ 10. 1007/ s00415-018-8754-6.
  204. Zargari Marandi R, Madeleine P, Omland Ø, Vuillerme N, Samani A. Eye movement characteristics reflected fatigue development in both young and elderly individuals. Sci Rep. 2018;8:13148. https:// doi. org/ 10. 1038/ s41598-018-31577-1.
  205. Bafna T, Hansen JP. Mental fatigue measurement using eye met- rics: a systematic literature review. Psychophysiology. 2021;58: e13828. https:// doi. org/ 10. 1111/ psyp. 13828.
  206. Moore RD, Romine MW, O'connor PJ, Tomporowski PD. The influence of exercise-induced fatigue on cognitive function. J Sports Sci. 2012;30:841-50. https:// doi. org/ 10. 1080/ 02640 414. 2012. 675083.
  207. Mehta RK, Agnew MJ. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. Eur J Appl Physiol. 2012;112:2891-902. https:// doi. org/ 10. 1007/ s00421-011-2264-x.
  208. Schmidt L, Lebreton M, Cléry-Melin M-L, Daunizeau J, Pes- siglione M. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 2012;10: e1001266. https:// doi. org/ 10. 1371/ journ al. pbio. 10012 66.
  209. Aitken B, MacMahon C. Shared demands between cognitive and physical tasks may drive negative effects of fatigue: a focused review. Front Sports Act Living. 2019;1:45. https:// doi. org/ 10. 3389/ fspor. 2019. 00045.
  210. Völker I, Kirchner C, Bock OL. On the relationship between subjective and objective measures of fatigue. Ergonomics. 2016;59:1259-63. https:// doi. org/ 10. 1080/ 00140 139. 2015. 11106 22.
  211. Dailey DL, Keffala VJ, Sluka KA. Do cognitive and physical fatigue tasks enhance pain, cognitive fatigue, and physical fatigue in people with fibromyalgia? Arthritis Care Res (Hoboken). 2015;67:288-96. https:// doi. org/ 10. 1002/ acr. 22417.