Universality in minor-closed graph classes
2021, Cornell University - arXiv
https://doi.org/10.48550/ARXIV.2109.00327Abstract
Stanisław Ulam asked whether there exists a universal countable planar graph (that is, a countable planar graph that contains every countable planar graph as a subgraph). János Pach (1981) answered this question in the negative. We strengthen this result by showing that every countable graph that contains all countable planar graphs must contain (i) an infinite complete graph as a minor, and (ii) a subdivision of the complete graph K t with multiplicity t, for every finite t. On the other hand, we construct a countable graph that contains all countable planar graphs and has several key properties such as linear colouring numbers, linear expansion, and every finite n-vertex subgraph has a balanced separator of size O(√ n). The graph is T 6 P ∞ , where T k is the universal treewidth-k countable graph (which we define explicitly), P ∞ is the 1-way infinite path, and denotes the strong product. More generally, for every positive integer t we construct a countable graph that contains every countable K t-minor-free graph and has the above key properties. Our final contribution is a construction of a countable graph that contains every countable K t-minor-free graph as an induced subgraph, has linear colouring numbers and linear expansion, and contains no subdivision of the countably infinite complete graph (implying (ii) above is best possible).
References (172)
- Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Baek Tejs Knudsen, and Morten Stöckel. Near-optimal induced universal graphs for bounded degree graphs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP), vol. 80 of LIPIcs. Leibniz Int. Proc. Inform., p. Art. 128. Schloss Dagstuhl. Leibniz-Zent. Inform., 2017.
- Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Baek Tejs Knudsen, and Morten Stöckel. Near-optimal induced universal graphs for cycles and paths. Discrete Appl. Math., 282:1-13, 2020.
- Wilhelm Ackermann. Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Math. Ann., 114(1):305-315, 1937.
- Noga Alon. Asymptotically optimal induced universal graphs. Geom. Funct. Anal., 27(1):1- 32, 2017.
- Noga Alon and Vera Asodi. Sparse universal graphs. J. Comput. Appl. Math., 142(1):1-11, 2002.
- Noga Alon and Michael Capalbo. Sparse universal graphs for bounded-degree graphs. Random Structures Algorithms, 31(2):123-133, 2007.
- Noga Alon, Bojan Mohar, and Daniel P. Sanders. On acyclic colorings of graphs on surfaces. Israel J. Math., 94:273-283, 1996.
- Noga Alon and Rajko Nenadov. Optimal induced universal graphs for bounded-degree graphs. Math. Proc. Cambridge Philos. Soc., 166(1):61-74, 2019.
- Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801-808, 1990.
- Stephen Alstrup, Søren Dahlgaard, and Mathias Baek Tejs Knudsen. Optimal induced universal graphs and adjacency labeling for trees. J. ACM, 64(4):Art. 27, 22, 2017.
- Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick. Adjacency labeling schemes and induced-universal graphs. SIAM J. Discrete Math., 33(1):116-137, 2019.
- Thomas Andreae. On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory, Ser. B, 41(1):37-47, 1986.
- Kenneth Appel and Wolfgang Haken. Every planar map is four colorable, vol. 98 of Contemporary Math. Amer. Math. Soc., 1989.
- Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of partial 3-trees. SIAM J. Algebraic Discrete Methods, 7(2):305-314, 1986.
- Christian Baadsgaard, Niels Emil Jannik Bjerrum-Bohr, Jacob L. Bourjaily, and Poul H. Damgaard. Scattering equations and Feynman diagrams. J. High Energy Phys., p. Article 136, 2015.
- László Babai, Fan R. K. Chung, Paul Erdős, Ron L. Graham, and Joel H. Spencer. On graphs which contain all sparse graphs. In Theory and practice of combinatorics, vol. 60 of North-Holland Math. Stud., pp. 21-26. 1982.
- Hyman Bass. Covering theory for graphs of groups. J. Pure Appl. Algebra, 89(1-2):3-47, 1993.
- Hans A. Bethe. Statistical theory of superlattices. Proc. Roy. Soc. Lond. A., 150:552--575, 1935.
- Sandeep N. Bhatt, Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Universal graphs for bounded-degree trees and planar graphs. SIAM J. Discrete Math., 2(2):145-155, 1989.
- Olivier Bodini. On the minimum size of a contraction-universal tree. In Proc. Graph-theoretic Concepts in Computer Science, vol. 2573 of Lecture Notes in Comput. Sci., pp. 25-34. Springer, 2002.
- Béla Bollobás and Andrew Thomason. Graphs which contain all small graphs. European J. Combin., 2(1):13-15, 1981.
- Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. Shorter labeling schemes for planar graphs. In Shuchi Chawla, ed., Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA '20), pp. 446-462. 2020. arXiv:1908.03341.
- Anthony Bonato. A course on the web graph, vol. 89 of Graduate Studies in Mathematics. Amer. Math. Soc., 2008.
- Oleg V. Borodin. On acyclic colorings of planar graphs. Discrete Math., 25(3):211-236, 1979.
- Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, and Pat Morin. Asymptot- ically optimal vertex ranking of planar graphs. arXiv:2007.06455, 2020.
- J.-M. Brochet and Reinhard Diestel. Normal tree orders for infinite graphs. Trans. Amer. Math. Soc., 345(2):871-895, 1994.
- Izak Broere and Johannes Heidema. Universality for and in induced-hereditary graph properties. Discuss. Math. Graph Theory, 33(1):33-47, 2013.
- Izak Broere, Johannes Heidema, and Peter Mihók. Constructing universal graphs for induced-hereditary graph properties. Math. Slovaca, 63(2):191-200, 2013.
- Izak Broere, Johannes Heidema, and Peter Mihók. Universality in graph properties with degree restrictions. Discuss. Math. Graph Theory, 33(3):477-492, 2013.
- Izak Broere and Tomáš Vetrík. Universal graphs for two graph properties. Ars Combin., 116:257-262, 2014.
- Matija Bucić, Nemanja Draganić, and Benny Sudakov. Universal and unavoidable graphs. 2021, arXiv:1912.04889.
- Steve Butler. Induced-universal graphs for graphs with bounded maximum degree. Graphs Combin., 25(4):461-468, 2009.
- Peter J. Cameron. Aspects of the random graph. In Béla Bollobás, ed., Graph Theory and Combinatorics, pp. 65-79. Academic Press, 1984.
- Peter J. Cameron. The random graph. In The mathematics of Paul Erdős, II, vol. 14 of Algorithms Combin., pp. 333-351. Springer, 1997.
- Peter J. Cameron. The random graph revisited. In C. Casacuberta, R. M. Miró-Roig, J. Verdera, and S. Xambó-Descamps, eds., European Congress of Mathematics, vol. 201 of Progr. Math., pp. 267-274. Birkhäuser, 2001.
- Abhijit Champanerkar, Ilya Kofman, and Jessica S. Purcell. Geometry of biperiodic alternating links. J. Lond. Math. Soc. (2), 99(3):807-830, 2019.
- Guantao Chen and Richard H. Schelp. Graphs with linearly bounded Ramsey numbers. J. Combin. Theory Ser. B, 57(1):138-149, 1993.
- Hao Chen. Apollonian ball packings and stacked polytopes. Discrete Comput. Geom., 55(4):801-826, 2016.
- Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM, 49(2):127-138, 2002.
- Zhiyun Cheng and Hongzhu Gao. Some applications of planar graph in knot theory. Acta Math. Sci. Ser. B (Engl. Ed.), 32(2):663-671, 2012.
- Gregory Cherlin and Saharon Shelah. Universal graphs with a forbidden subtree. J. Combin. Theory Ser. B, 97(3):293-333, 2007.
- Gregory Cherlin and Saharon Shelah. Universal graphs with a forbidden subgraph: block path solidity. Combinatorica, 36(3):249-264, 2016.
- Gregory Cherlin, Saharon Shelah, and Niandong Shi. Universal graphs with forbidden subgraphs and algebraic closure. Adv. in Appl. Math., 22(4):454-491, 1999.
- Gregory Cherlin and Niandong Shi. Forbidden subgraphs and forbidden substructures. J. Symbolic Logic, 66(3):1342-1352, 2001.
- Gregory Cherlin and Lasse Tallgren. Universal graphs with a forbidden near-path or 2-bouquet. J. Graph Theory, 56(1):41-63, 2007.
- Fan R. K. Chung and Paul Erdős. On unavoidable graphs. Combinatorica, 3(2):167-176, 1983.
- Fan R. K. Chung and Ron L. Graham. On graphs which contain all small trees. J. Combinatorial Theory Ser. B, 24(1):14-23, 1978.
- Fan R. K. Chung, Ron L. Graham, and Nicholas Pippenger. On graphs which contain all small trees. II. In Proc. Fifth Hungarian Colloq. on Combinatorics (Vol. I, vol. 18 of Colloq. Math. Soc. János Bolyai, pp. 213-223. 1978.
- Nicolaas G. de Bruijn and Paul Erdös. A colour problem for infinite graphs and a problem in the theory of relations. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math., 13:369-373, 1951.
- Pierre de la Harpe. Topics in geometric group theory. University of Chicago Press, 2000.
- Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul Seymour, and Dirk Vertigan. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Combin. Theory Ser. B, 91(1):25-41, 2004.
- Reinhard Diestel. On universal graphs with forbidden topological subgraphs. European J. Combin., 6(2):175-182, 1985.
- Reinhard Diestel. Graph decompositions: a study in infinite graph theory. Oxford University Press, 1990.
- Reinhard Diestel. The depth-first search tree structure of T K ℵ0 -free graphs. J. Combin. Theory Ser. B, 61(2):260-262, 1994.
- Reinhard Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer, 5th edn., 2018.
- Reinhard Diestel, Rudolf Halin, and Walter Vogler. Some remarks on universal graphs. Combinatorica, 5(4):283-293, 1985.
- Reinhard Diestel and Daniela Kühn. A universal planar graph under the minor relation. J. Graph Theory, 32(2):191-206, 1999.
- Michał Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds for centered colorings. Advances in Combinatorics, 8, 2021.
- Vida Dujmović, David Eppstein, and David R. Wood. Structure of graphs with locally restricted crossings. SIAM J. Discrete Math., 31(2):805-824, 2017.
- Vida Dujmović, Louis Esperet, Gwenaël Joret, Cyril Gavoille, Piotr Micek, and Pat Morin. Adjacency labelling for planar graphs (and beyond). J. ACM, to appear. arXiv:2003.04280.
- Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. Planar graphs have bounded nonrepetitive chromatic number. Advances in Combina- torics, 5, 2020.
- Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. Clustered 3-colouring graphs of bounded degree. Combinatorics, Probability & Computing, 2021. arXiv:2002.11721.
- Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22, 2020.
- Vida Dujmović, Pat Morin, and David R. Wood. Graph product structure for non- minor-closed classes. arXiv:1907.05168, 2019.
- Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs. European J. Comb., 34(5):833-840, 2013.
- Zdeněk Dvořák. Sublinear separators, fragility and subexponential expansion. European J. Combin., 52(A):103-119, 2016.
- Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood. Notes on graph product structure theory. In David R. Wood, Jan de Gier, Cheryl E. Praeger, and Terence Tao, eds., 2019-20 MATRIX Annals, pp. 513-533.
- Springer, 2021. arXiv:2001.08860.
- Zdeněk Dvořák and Sergey Norin. Strongly sublinear separators and polynomial expan- sion. SIAM J. Discrete Math., 30(2):1095-1101, 2016.
- Zdeněk Dvořák. On classes of graphs with strongly sublinear separators. European J. Combin., 71:1-11, 2018.
- Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. J. Combin. Theory Ser. B, 137:137-144, 2019.
- Paul Erdős and Alfred Rényi. Asymmetric graphs. Acta Math. Acad. Sci. Hungar., 14:295-315, 1963.
- Louis Esperet, Gwenaël Joret, and Pat Morin. Sparse universal graphs for planarity. 2020. arXiv:2010.05779.
- Louis Esperet, Arnaud Labourel, and Pascal Ochem. On induced-universal graphs for the class of bounded-degree graphs. Inform. Process. Lett., 108(5):255-260, 2008.
- Louis Esperet and Jean-Florent Raymond. Polynomial expansion and sublinear separa- tors. European J. Combin., 69:49-53, 2018.
- Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric graphs. In Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 1563-1575. 2012.
- Jacob Fox and János Pach. A separator theorem for string graphs and its applications. Combin. Probab. Comput., 19(3):371-390, 2010.
- Jacob Fox and János Pach. Applications of a new separator theorem for string graphs. Combin. Probab. Comput., 23(1):66-74, 2014.
- Alan Frieze and Charalampos E. Tsourakakis. Some properties of random Apollonian networks. Internet Math., 10(1-2):162-187, 2014.
- Norie Fu, Akihiro Hashikura, and Hiroshi Imai. Proximity and motion planning on l_1-embeddable tilings. In François Anton and Wenping Wang, eds., 9th International Symp. on Voronoi Diagrams in Science and Engineering, pp. 150-159. IEEE Computer Society, 2011.
- Zoltán Füredi and Péter Komjáth. Nonexistence of universal graphs without some trees. Combinatorica, 17(2):163-171, 1997.
- Zoltán Füredi and Péter Komjáth. On the existence of countable universal graphs. J. Graph Theory, 25(1):53-58, 1997.
- Cyril Gavoille and Arnaud Labourel. Shorter implicit representation for planar graphs and bounded treewidth graphs. In Lars Arge, Michael Hoffmann, and Emo Welzl, eds., Proc. 15th Annual European Symp. on Algorithms (ESA 2007), vol. 4698 of Lecture Notes in Comput. Sci., pp. 582-593. Springer, 2007.
- Stephen M. Gersten. Intersections of finitely generated subgroups of free groups and resolutions of graphs. Invent. Math., 71(3):567-591, 1983.
- M. K. Gol'dberg and É. M. Livshits. On minimal universal trees. Mathematical notes of the Academy of Sciences of the USSR, 4:713-717, 1968.
- Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, eds. Handbook of discrete and computational geometry. CRC Press, 2018.
- Geoffrey Grimmett. Percolation. Springer-Verlag, 1999.
- Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Konstantinos Stavropoulos. Coloring and covering nowhere dense graphs. SIAM J. Discrete Math., 32(4):2467-2481, 2018.
- Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):Art. 17, 2017.
- Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman, 1987.
- Ömer Gürdoğan and Vladimir Kazakov. New integrable 4D quantum field theories from strongly deformed planar N = 4 supersymmetric Yang-Mills theory. Phys. Rev. Lett., 117(20):201602, 2016.
- András Hajnal and Péter Komjáth. Embedding graphs into colored graphs. Trans. Amer. Math. Soc., 307(1):395-409, 1988.
- András Hajnal and János Pach. Monochromatic paths in infinite coloured graphs. In Finite and infinite sets, vol. 37 of Colloq. Math. Soc. János Bolyai, pp. 359-369. North-Holland, 1984.
- Rudolf Halin. Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen. Math. Ann., 156:216-225, 1964.
- Rudolf Halin. Simplicial decompositions of infinite graphs. Ann. Discrete Math., 3:93-109, 1978.
- Rudolf Halin. Simplicial decompositions: some new aspects and applications. In Graph theory, vol. 62 of North-Holland Math. Stud., pp. 101-110. 1982.
- Rudolf Halin. Simplicial decompositions and triangulated graphs. In Graph theory and combinatorics, pp. 191-196. Academic Press, 1984.
- Zheng-Xu He and Oded Schramm. Fixed points, Koebe uniformization and circle packings. Ann. of Math. (2), 137(2):369-406, 1993.
- C. Ward Henson. A family of countable homogeneous graphs. Pacific J. Math., 38:69-83, 1971.
- Robert Hickingbotham and David R. Wood. Dense subgraphs and minors in graph products. 2021.
- Wilfried Imrich. On Whitney's theorem on the unique embeddability of 3-connected planar graphs. In Recent advances in graph theory (Proc. Second Czechoslovak Sympos.), pp. 303-306. 1975.
- Heinz A. Jung. Wurzelbäume und unendliche Wege in Graphen. Math. Nachr., 41:1-22, 1969.
- Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM J. Discrete Math., 5(4):596-603, 1992.
- Hal A. Kierstead and William T. Trotter. Planar graph coloring with an uncooperative partner. J. Graph Theory, 18(6):569-584, 1994.
- Hal A. Kierstead and Daqing Yang. Orderings on graphs and game coloring number. Order, 20(3):255-264, 2003.
- Kolja Knauer and Torsten Ueckerdt. Simple treewidth. In Pavel Rytír, ed., Midsummer Combinatorial Workshop Prague. 2012.
- Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math.-Phys. Klasse, 88:141-164, 1936.
- Menachem Kojman. Representing embeddability as set inclusion. J. London Math. Soc. (2), 58(2):257-270, 1998.
- Péter Komjáth. Some remarks on universal graphs. Discrete Math., 199(1-3):259-265, 1999.
- Péter Komjáth. The chromatic number of infinite graphs-a survey. Discrete Math., 311(15):1448-1450, 2011.
- Péter Komjáth, Alan H. Mekler, and János Pach. Some universal graphs. Israel J. Math., 64(2):158-168, 1988.
- Péter Komjáth and János Pach. Universal graphs without large bipartite subgraphs. Mathematika, 31(2):282-290, 1984.
- Péter Komjáth and János Pach. Universal elements and the complexity of certain classes of infinite graphs. Discrete Math., 95(1-3):255-270, 1991.
- Dénes König. Über eine schlussweise aus dem endlichen ins unendliche. Acta Sci. Math. (Szeged), 3(2-3):121-130, 1927.
- Alexandr V. Kostochka, Éric Sopena, and Xuding Zhu. Acyclic and oriented chromatic numbers of graphs. J. Graph Theory, 24(4):331-340, 1997.
- Jan Kratochvíl and Michal Vaner. A note on planar partial 3-trees. arXiv:1210.8113, 2012.
- Stephan Kreutzer, Michal Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. The generalised colouring numbers on classes of bounded expansion. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, eds., 41st International Symp. on Mathematical Foundations of Computer Science (MFCS 2016), vol. 58 of LIPIcs, pp. 85:1-85:13. 2016.
- Daniel Kriz and Igor Kriz. A spanning tree cohomology theory for links. Adv. Math., 255:414-454, 2014.
- Kazimierz Kuratowski. Sur le probléme des courbes gauches en topologie. Fund. Math., 16:271-283, 1930.
- Igor Kříž and Robin Thomas. Clique-sums, tree-decompositions and compactness. Discrete Math., 81(2):177-185, 1990.
- Igor Kříž and Robin Thomas. On well-quasi-ordering finite structures with labels. Graphs Combin., 6(1):41-49, 1990.
- Igor Kříž and Robin Thomas. The Menger-like property of the tree-width of infinite graphs. J. Combin. Theory Ser. B, 52(1):86-91, 1991.
- Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math., 36(2):177-189, 1979.
- Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag, 1977.
- Lilian Markenzon, Claudia Marcela Justel, and N. Paciornik. Subclasses of k-trees: characterization and recognition. Discrete Appl. Math., 154(5):818-825, 2006.
- Pierpaolo Mastrolia and Sebastian Mizera. Feynman integrals and intersection theory. J. High Energy Phys., Article 139, 2019.
- Peter Mihók, Jozef Miškuf, and Gabriel Semanišin. On universal graphs for hom- properties. Discuss. Math. Graph Theory, 29(2):401-409, 2009.
- Bojan Mohar. Embeddings of infinite graphs. J. Combin. Theory Ser. B, 44(1):29-43, 1988.
- Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins University Press, 2001.
- John W. Moon. On minimal n-universal graphs. Proc. Glasgow Math. Assoc., 7:32-33, 1965.
- Crispin St. J. A. Nash-Williams. Infinite graphs-a survey. J. Combinatorial Theory, 3:286-301, 1967.
- Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity, vol. 28 of Algorithms and Combinatorics. Springer, 2012.
- Massimo Ostilli. Cayley trees and Bethe lattices: a concise analysis for mathematicians and physicists. Phys. A, 391(12):3417-3423, 2012.
- János Pach. On metric properties of countable graphs. Matematikai Lapok, 26:305-310, 1975.
- János Pach. A problem of Ulam on planar graphs. European J. Combin., 2(4):357-361, 1981.
- János Pach and Géza Tóth. Recognizing string graphs is decidable. Discrete Comput. Geom., 28(4):593-606, 2002.
- Michał Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on proper minor-closed graph classes. In Timothy M. Chan, ed., Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1501-1520. 2019. arXiv:1807.03683.
- Max Pitz. A unified existence theorem for normal spanning trees. J. Combin. Theory Ser. B, 145:466-469, 2020.
- Serge Plotkin, Satish Rao, and Warren D. Smith. Shallow excluded minors and improved graph decompositions. In Daniel Sleator, ed., Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA '94), pp. 462-470. ACM, 1994.
- Richard Rado. Universal graphs and universal functions. Acta Arith., 9:331-340, 1964.
- Bruce A. Reed and Paul Seymour. Fractional colouring and Hadwiger's conjecture. J. Combin. Theory Ser. B, 74(2):147-152, 1998.
- Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. The four-colour theorem. J. Combin. Theory Ser. B, 70(1):2-44, 1997.
- Neil Robertson and Paul Seymour. Graph minors I-XXIII. J. Combin. Theory Ser. B, 1983-2010.
- Neil Robertson and Paul Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986.
- Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B, 41(1):92-114, 1986.
- Neil Robertson, Paul Seymour, and Robin Thomas. Excluding subdivisions of infinite cliques. Trans. Amer. Math. Soc., 332(1):211-223, 1992.
- Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a planar graph. J. Combin. Theory Ser. B, 62(2):323-348, 1994.
- Brian Rotman. Remarks on some theorems of Rado on universal graphs. J. London Math. Soc. (2), 4:123-126, 1971.
- Alex Scott, Paul Seymour, and David R. Wood. Bad news for chordal partitions. J. Graph Theory, 90:5-12, 2019.
- Jean-Pierre Serre. Arbres, amalgames, SL 2 . Société Mathématique de France, 1977.
- Jean-Pierre Serre. Trees. Springer-Verlag, 1980.
- Paul Seymour. Disjoint paths in graphs. Discrete Math., 29(3):293-309, 1980.
- Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. J. Amer. Math. Soc., 1(3):647-681, 1988.
- John R. Stallings. Topology of finite graphs. Invent. Math., 71(3):551-565, 1983.
- Ernst Steinitz. Polyeder und Raumeinteilungen. Encyclopädie der Mathematischen Wis- senschaften, 3AB12:1-139, 1922.
- Kenneth Stephenson. Introduction to circle packing: The theory of discrete analytic functions. Cambridge Univ. Press, 2005.
- Roberto Tamassia, ed. Handbook of graph drawing and visualization. Chapman and Hall / CRC Press, 2013.
- Robin Thomas. The tree-width compactness theorem for hypergraphs. 1988.
- Carsten Thomassen. 2-linked graphs. European J. Combin., 1(4):371-378, 1980.
- Carsten Thomassen. Infinite graphs. In Selected topics in graph theory, 2, pp. 129-160. Academic Press, 1983.
- Carsten Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. In Proc. 3rd International Conference on Combinatorial Mathematics, vol. 555 of Ann. New York Acad. Sci., pp. 402-412. 1989.
- Carsten Thomassen. The converse of the Jordan curve theorem and a characterization of planar maps. Geom. Dedicata, 32(1):53-57, 1989.
- Carsten Thomassen. A link between the Jordan curve theorem and the Kuratowski planarity criterion. Amer. Math. Monthly, 97(3):216-218, 1990.
- Carsten Thomassen. The number of colorings of planar graphs with no separating triangles. J. Combin. Theory Ser. B, 122:615-633, 2017.
- Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product structure theorem. 2021. arXiv:2108.00198.
- Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and Sebastian Siebertz. On the generalised colouring numbers of graphs that exclude a fixed minor. European J. Combin., 66:129-144, 2017.
- Jan van den Heuvel and David R. Wood. Improper colourings inspired by Hadwiger's conjecture. J. London Math. Soc., 98:129-148, 2018. arXiv:1704.06536.
- Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570-590, 1937.
- Klaus Wagner. Fastplättbare Graphen. J. Combinatorial Theory, 3:326-365, 1967.
- Wikipedia. https://en.wikipedia.org/wiki/Nielsen\T1\textendashSchreier_ theorem. 2020.
- Lasse Wulf. Stacked treewidth and the Colin de Verdiére number. 2016. Bachelorthesis, Institute of Theoretical Computer Science, Karlsruhe Institute of Technology.
- Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Math., 309(18):5562-5568, 2009.