Academia.eduAcademia.edu

Outline

Unveiling multiferroic proximity effect in graphene

2019, 2D Materials

https://doi.org/10.1088/2053-1583/AB5319

Abstract

We demonstrate that electronic and magnetic properties of graphene can be tuned via proximity of multiferroic substrate. Our first-principles calculations performed both with and without spin-orbit coupling clearly show that by contacting graphene with bismuth ferrite BiFeO 3 (BFO) film, the spin-dependent electronic structure of graphene is strongly impacted both by the magnetic order and by electric polarization in the underlying BFO. Based on extracted Hamiltonian parameters obtained from the graphene band structure, we propose a concept of six-resistance device based on exploring multiferroic proximity effect giving rise to significant proximity electro-(PER), magneto-(PMR), and multiferroic (PMER) resistance effects. This finding paves a way towards multiferroic control of magnetic properties in two dimensional materials.

References (68)

  1. Chappert, C.; Fert, A.; Dau, F. N. The emergence of spin electronics in data storage. Nature Materials 2007, 6, 813-823.
  2. Zutić, I. .; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Reviews of Modern Physics 2004, 76, 323.
  3. Lou, X.; Adelmann, C.; Crooker, S. A.; Garlid, E. S.; Zhang, J.; Reddy, K. S. M.; Flexner, S. D.; PalmstrÃÿm, C. J.; Crowell, P. A. Electrical detection of spin transport in lateral ferromagnetâĂŞsemiconductor devices. Nature Physics 2007, 3, 197-202.
  4. Dash, S. P.; Sharma, S.; Patel, R. S.; Jong, M. P. D.; Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 2009, 462, 491-494.
  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Materials 2007, 6, 183-191.
  6. Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 2009, 81, 109.
  7. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574.
  8. Popinciuc, M.; Józsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport in graphene field-effect transistors. Physical Review B 2009, 80, 214427.
  9. Dlubak, B.; Seneor, P.; Anane, A.; Barraud, C.; Deranlot, C.; Deneuve, D.; Servet, B.; Mattana, R.; Petroff, F.; Fert, A. Are Al 2 O 3 and MgO tunnel barriers suitable for spin injection in graphene? Applied Physics Letters 2010, 97, 092505.
  10. Han, W.; Kawakami, R. K. Spin Relaxation in Single-Layer and Bilayer Graphene. Physical Review Letters 2011, 107, 047207.
  11. Yang, T.-Y.; Balakrishnan, J.; Volmer, F.; Avsar, A.; Jaiswal, M.; Samm, J.; Ali, S. R.; Pachoud, A.; Zeng, M.; Popinciuc, M.; Güntherodt, G.; Beschoten, B.; Özyilmaz, B. Observation of Long Spin-Relaxation Times in Bilayer Graphene at Room Temperature. Physical Review Letters 2011, 107, 047206.
  12. Maassen, T.; van den Berg, J. J.; IJbema, N.; Fromm, F.; Seyller, T.; Yakimova, R.; van Wees, B. J. Long Spin Relaxation Times in Wafer Scale Epitaxial Graphene on SiC(0001). Nano Letters 2012, 12, 1498-1502.
  13. Dlubak, B.; Martin, M.-B.; Deranlot, C.; Servet, B.; Xavier, S.; Mattana, R.; Sprin- kle, M.; Berger, C.; Heer, W. A. D.; Petroff, F.; Anane, A.; Seneor, P.; Fert, A. Highly efficient spin transport in epitaxial graphene on SiC. Nature Physics 2012, 8, 557-561.
  14. Cummings, A. W.; Roche, S. Effects of Dephasing on Spin Lifetime in Ballistic Spin- Orbit Materials. Physical Review Letters 2016, 116, 086602.
  15. Tuan, D. V.; Ortmann, F.; Cummings, A. W.; Soriano, D.; Roche, S. Spin dynamics and relaxation in graphene dictated by electron-hole puddles. Scientific Reports 2016, 6, 21046.
  16. Roche, S. et al. Graphene spintronics: the European Flagship perspective. 2D Materials 2015, 2, 030202.
  17. Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nature Nan- otechnology 2014, 9, 794-807.
  18. Yazyev, O. V.; Helm, L. Defect-induced magnetism in graphene. Physical Review B 2007, 75, 125408.
  19. Yazyev, O. V. Magnetism in Disordered Graphene and Irradiated Graphite. Physical Review Letters 2008, 101, 037203.
  20. Yazyev, O. V. Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics 2010, 73, 056501.
  21. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347-349.
  22. Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotechnology 2008, 3, 408-412.
  23. Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nature Nan- otechnology 2010, 5, 190-194.
  24. Yang, H.-X.; Chshiev, M.; Boukhvalov, D. W.; Waintal, X.; Roche, S. Inducing and optimizing magnetism in graphene nanomeshes. Physical Review B 2011, 84, 214404.
  25. Trolle, M. L.; MÃÿller, U. S.; Pedersen, T. G. Large and stable band gaps in spin- polarized graphene antidot lattices. Physical Review B 2013, 88, 195418.
  26. Soriano, D.; Leconte, N.; Ordejón, P.; Charlier, J.-C.; Palacios, J.-J.; Roche, S. Magne- toresistance and Magnetic Ordering Fingerprints in Hydrogenated Graphene. Physical Review Letters 2011, 107, 016602.
  27. McCreary, K. M.; Swartz, A. G.; Han, W.; Fabian, J.; Kawakami, R. K. Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents. Physical Review Letters 2012, 109, 186604.
  28. Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Physical Review B 2008, 77, 235430.
  29. Ding, J.; Qiao, Z.; Feng, W.; Yao, Y.; Niu, Q. Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study. Physical Review B 2011, 84, 195444.
  30. Zhang, H.; Lazo, C.; Blügel, S.; Heinze, S.; Mokrousov, Y. Electrically Tunable Quan- tum Anomalous Hall Effect in Graphene Decorated by 5d Transition-Metal Adatoms. Physical Review Letters 2012, 108, 056802.
  31. Jiang, H.; Qiao, Z.; Liu, H.; Shi, J.; Niu, Q. Stabilizing Topological Phases in Graphene via Random Adsorption. Physical Review Letters 2012, 109, 116803.
  32. Kim, W. Y.; Kim, K. S. Tuning Molecular Orbitals in Molecular Electronics and Spin- tronics. Accounts of Chemical Research 2010, 43, 111-120.
  33. Yang, J. W.; Lee, G.; Kim, J. S.; Kim, K. S. Gap Opening of Graphene by Dual FeCl3-Acceptor and K-Donor Doping. Journal of Physical Chemistry Letters 2011, 2, 2577-2581.
  34. Wang, Z.; Tang, C.; Sachs, R.; Barlas, Y.; Sh, J. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Physical Review Letters 2015, 114, 016603.
  35. Leutenantsmeyer, J. C.; Kaverzin, A. A.; Wojtaszek, M.; van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Materials 2017, 4, 014001.
  36. Singh, S.; Katoch, J.; Zhu, T.; Meng, K.-Y.; Liu, T.; Brangham, J. T.; Yang, F.; Flat- tÃľ, M. E.; Kawakami, R. K. Strong Modulation of Spin Currents in Bilayer Graphene by Static and Fluctuating Proximity Exchange Fields. Physical Review Letters 2017, 118, 187201.
  37. Yang, H. X.; Hallal, A.; Terrade, D.; Waintal, X.; Roche, S.; Chshiev, M. Proxim- ity Effects Induced in Graphene by Magnetic Insulators: First-Principles Calculations on Spin Filtering and Exchange-Splitting Gaps. Physical Review Letters 2013, 110, 046603.
  38. Sakai, S.; Majumdar, S.; Popov, Z. I.; Avramov, P. V.; Entani, S.; Hasegawa, Y.; Yamada, Y.; Huhtinen, H.; Naramoto, H.; Sorokin, P. B.; Yamauchi, Y. Proximity- Induced Spin Polarization of Graphene in Contact with Half-Metallic Manganite. ACS Nano 2016, 10, 7532-7541.
  39. Qiao, Z.; Ren, W.; Chen, H.; Bellaiche, L.; Zhang, Z.; MacDonald, A.; Niu, Q. Quan- tum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator. Physical Review Letters 2014, 112, 116404.
  40. Vobornik, I.; Manju, U.; Fujii, J.; Borgatti, F.; Torelli, P.; Krizmancic, D.; Hor, Y. S.; Cava, R. J.; Panaccione, G. Magnetic Proximity Effect as a Pathway to Spintronic Applications of Topological Insulators. NanoLetters 2011, 11, 4079-4082.
  41. Zanolli, Z. Graphene-multiferroic interfaces for spintronics applications. Scientific Re- ports 2016, 6, 31346.
  42. Hallal, A.; Ibrahim, F.; Yang, H.; Roche, S.; Chshiev, M. Tailoring magnetic insula- tor proximity effects in graphene: first-principles calculations. 2D Materials 2017, 4, 025074.
  43. Mendes, J. B. S.; Alves Santos, O.; Meireles, L. M.; Lacerda, R. G.; Vilela-Leão, L. H.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M. Spin- Current to Charge-Current Conversion and Magnetoresistance in a Hybrid Structure of Graphene and Yttrium Iron Garnet. Physical Review Letters 2015, 115, 226601.
  44. Evelt, M.; Ochoa, H.; Dzyapko, O.; Demidov, V. E.; Yurgens, A.; Sun, J.; Tserkovnyak, Y.; Bessonov, V.; Rinkevich, A. B.; Demokritov, S. O. Chiral charge pumping in graphene deposited on a magnetic insulator. Physical Review B 2017, 95, 024408.
  45. Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J.; Moodera, J. S.; Chen, C.-T. Strong interfacial exchange field in the graphene/EuS heterostructure. Nature Materials 2016, 15, 711-716.
  46. Wu, Y.-F. et al. Magnetic proximity effect in graphene coupled to a BiFeO 3 nanoplate. Physical Review B 2017, 95, 195426.
  47. Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G. V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. Asymmetric Modulation on Exchange Field in a Graphene/BiFeO 3 Heterostructure by External Magnetic Field. Nano Letters 2018, 18, 2435-2441.
  48. Zanolli, Z.; Niu, C.; Bihlmayer, G.; Mokrousov, Y.; Mavropoulos, P.; Verstraete, M. J.; BlÃijgel, S. Hybrid quantum anomalous Hall effect at graphene-oxide interfaces. Phys- ical Review B 2018, 98, 155404.
  49. Baeumer, C.; Saldana-Greco, D.; Martirez, J. M. P.; Rappe, A. M.; Shim, M.; Mar- tin, L. W. Ferroelectrically driven spatial carrier density modulation in graphene. Na- ture Communication 2015, 6, 6371.
  50. Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. First- principles study of spontaneous polarization in multiferroic BiFeO 3 . Physical Review B 2005, 71, 014113.
  51. Ravindran, P.; Vidya, R.; Kjekshus, A.; FjellvÃěg, H.; Eriksson, O. Theoretical inves- tigation of magnetoelectric behavior in BiFeO 3 . Physical Review B 2006, 74, 224412.
  52. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R. Epitaxial BiFeO 3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719-1722.
  53. Zavaliche, F.; Yang, S. Y.; Zhao, T.; Chu, Y. H.; Cruz, M. P.; Eom, C. B.; Ramesh, R. Multiferroic BiFeO 3 films: domain structure and polarization dynamics. Phase Transi- tions 2006, 79, 991-1017.
  54. BÃľa, H. et al. Evidence for Room-Temperature Multiferroicity in a Compound with a Giant Axial Ratio. Physical Review Letters 2009, 102, 217603.
  55. Blöchl, P. E. Projector augmented-wave method. Physical Review B 1994, 50, 17953- 17979.
  56. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47, 558-561.
  57. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcu- lations using a plane-wave basis set. Physical Review B 1996, 54, 11169-11186.
  58. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6, 15-50.
  59. P.Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
  60. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented- wave method. Physical Review B 1999, 59, 1758-1775.
  61. Liechtenstein, A. I.; Anisimov, V. I.; Zaane, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B 1995, 52, 5467R.
  62. Sosnowska, I.; Schäfer, W.; Kockelmann, W.; Andersen, K.; Troyanchuk, I. Crys- tal structure and spiral magnetic ordering of BiFeO 3 doped with manganese. Applied Physics A 2002, 74, s1040-s1042.
  63. Kubel, F.; Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO 3 . Acta Crystallographica Section B 1990, B46, 698-702.
  64. Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.; Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G. Optical band gap of BiFeO 3 grown by molecular-beam epitaxy. Applied Physics Letters 2008, 92, 142908.
  65. Kane, C. L.; Mele, E. J. Quantum Spin Hall Effect in Graphene. Physical Review Letters 2005, 95, 226801.
  66. Tse, W.-K.; Qiao, Z.; Yao, Y.; MacDonald, A. H.; Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Physical Review B 2011, 83, 155447.
  67. Groth, C. W.; Wimmer, M.; Akhmerov, A. R.; Waintal, X. Kwant: a software package for quantum transport. New Journal of Physics 2014, 16, 063065.
  68. Song, H.-D.; Zhu, P.-F.; Yang, X.; Qin, M.; Ren, Z.; Duan, C.-G.; Han, G.; Liao, Z.- M.; Yu, D. Electrical control of magnetic proximity effect in a graphene/multiferroic heterostructure. Applied Physics Letters 2018, 113, 183101.