Academia.eduAcademia.edu

Outline

Spin-orbit proximity effect in graphene

2014, Nature communications

https://doi.org/10.1038/NCOMMS5875

Abstract

The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a pro...

References (32)

  1. Avsar, A. et al. Toward wafer scale fabrication of graphene based spin valve devices. Nano Lett. 11, 2363-2368 (2011).
  2. Maassen, T. et al. Long spin relaxation times in wafer scale epitaxial graphene on SiC (0001). Nano Lett. 12, 1498-1502 (2012).
  3. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
  4. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396-2399 (2011).
  5. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).
  6. Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin-orbit coupling in graphene. Phys. Rev. B 82, 245412 (2010).
  7. Castro Neto, A. H. & Guinea, F. Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009).
  8. Balakrishnan, J., Koon, G. K. W., Jaiswal, M., Castro Neto, A. H. & O ¨zyilmaz, B. Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9, 284-287 (2013).
  9. Wojtaszek, M., Vera-Marun, I. J., Maassen, T. & van Wees, B. J. Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices. Phys. Rev. B 87, 081402(R) (2013).
  10. Gmitra, M., Kochan, D. & Fabian, J. Spin-orbit coupling in hydrogenated graphene. Phys. Rev. Lett. 110, 246602 (2013).
  11. Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).
  12. Ma, D., Li, Z. & Yang, Z. Strong spin-orbit splitting in graphene with adsorbed Au adatoms. Carbon NY 50, 297-305 (2012).
  13. Pi, K. et al. Manipulation of spin transport in graphene by surface chemical doping. Phys. Rev. Lett. 104, 187201 (2010).
  14. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712 (2012).
  15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistor. Nat. Nanotechnol. 6, 147-150 (2011).
  16. Yu, J. Y. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430-3434 (2009).
  17. Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).
  18. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311-1314 (2013).
  19. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726 (2010).
  20. Janssen, T. J. B. M., Tzalenchuk, A., Lara-Avila, S., Kubatkin, S. & Fal'ko, V. I. Quantum resistance metrology using graphene. Rep. Prog. Phys. 76, 104501 (2013).
  21. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328-330 (2011).
  22. Renard, J., Studer, M. & Folk, J. A. Origins of nonlocality near the neutrality point in graphene. Phys. Rev. Lett. 112, 116601 (2014).
  23. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 79, 035304 (2009).
  24. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713-716 (2002).
  25. Jo ´zsa, C. et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403 (R) (2009).
  26. Ochoa, H., Castro Neto, A. H. & Guinea, F. Elliot-Yafet mechanism in graphene. Phys. Rev. Lett. 108, 206808 (2012).
  27. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622 (2013).
  28. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disfulide. Nat. Commun. 4, 2642 (2013).
  29. Tan, J. Y. et al. Electronic transport in graphene-based heterostructures. Appl. Phys. Lett. 104, 183504 (2014).
  30. Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).
  31. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787-1799 (2006).
  32. Yen, P. C., Huang, Y. S. & Tiong, K. K. The growth and characterization of rhenium-doped WS2 single crystals. J. Phys. Condens. Matter. 16, 2171 (2004).