Academia.eduAcademia.edu

Outline

Towards smart manufacturing: Implementation and benefits

2021, Journal of Ubiquitous Systems and Pervasive Networks

https://doi.org/10.5383/JUSPN.15.02.004

Abstract

Production activities is generating a large amount of data in different types (i.e., text, images), that is not well exploited. This data can be translated easily to knowledge that can help to predict all the risks that can impact the business, solve problems, promote efficiency of the manufacture to the maximum, make the production more flexible and improving the quality of making smart decisions, however, implementing the Smart Manufacturing(SM) concept provides this opportunity supported by the new generation of the technologies. Internet Of Things (IoT) for more connectivity and getting data in real time, Big Data to store the huge volume of data and Deep Learning algorithms(DL) to learn from the historical and real time data to generate knowledge, that can be used, predict all the risks, problem solving, and better decision-making. In this paper, we will introduce SM and the main technologies to success the implementation, the benefits, and the challenges.

References (26)

  1. Ghobakhloo, M. (2019). Determinants of information and digital technology implementation for smart manufacturing. International Journal of Production Research, 1-22. doi:10.1080/00207543.2019.1630775. https://doi.org/10.1080/00207543.2019.1630775
  2. Zheng, P., wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., … Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137- 150. doi:10.1007/s11465-018-0499-5. https://doi.org/10.1007/s11465-018-0499-5
  3. Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. Journal of Manufacturing Science and Engineering, 139(7), 071018. doi:10.1115/1.4036350. https://doi.org/10.1115/1.4036350
  4. Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems. doi:10.1016/j.jmsy.2018.01.003 https://doi.org/10.1016/j.jmsy.2018.01.003
  5. Tao, F., & Qi, Q. (2017). New IT Driven Service- Oriented Smart Manufacturing: Framework and Characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-11. doi:10.1109/tsmc.2017.2723764 https://doi.org/10.1109/TSMC.2017.2723764
  6. Thoben, K.-D., Wiesner, S., & Wuest, T. (2017).
  7. "Industrie 4.0" and Smart Manufacturing -A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1), 4-16. doi:10.20965/ijat.2017.p0004 https://doi.org/10.20965/ijat.2017.p0004
  8. O'Donovan, P., Leahy, K., Bruton, K., & O'Sullivan, D. T. J. (2015). An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. Journal of Big Data, 2(1). doi:10.1186/s40537-015-0034-z https://doi.org/10.1186/s40537-015-0034-z [8] Sameer Mittal1, Muztoba Ahmad Khan1, David Romero2 and Thorsten Wuest1,Engineering Manufacture (2019) ,Smart manufacturing: Characteristics, technologies and enabling factors, doi:10.1177/0954405417736547 https://doi.org/10.1177/0954405417736547
  9. Oyetunde, T., Bao, F. S., Chen, J.-W., Martin, H. G., & Tang, Y. J. (2018). Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnology Advances, 36(4), 1308-1315. doi:10.1016/j.biotechadv.2018.04.008 https://doi.org/10.1016/j.biotechadv.2018.04.008
  10. Stanisavljevic, D.; Spitzer, M. A Review of Related Work on Machine Learning in Semiconductor Manufacturing and Assembly Lines; SAMI@ iKNOW: Graz, Austria, 18-19 October 2016.
  11. Ivana Medojevica , Dragan Markovica , Vojislav Simonovica , Aleksandra Joksimovica , APPLICATION OF MACHINE LEARNING IN THE COLOR SORTING OF AGRICULTURAL PRODUCTS, (2018) 9th international scientific and expert conference, Novi Sad Serbia page :327
  12. Wuest, T., Weimer, D., Irgens, C., & Thoben, K.-D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23-45. doi:10.1080/21693277.2016.1192517 https://doi.org/10.1080/21693277.2016.1192517
  13. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820. doi:10.1109/tii.2014.2349359 https://doi.org/10.1109/TII.2014.2349359
  14. Deng, L. (2014). Deep Learning: Methods and Applications. Foundations and Trends® in Signal Processing, 7(3-4), 197-387. doi:10.1561/2000000039 https://doi.org/10.1561/2000000039
  15. Dai, H.-N., Wang, H., Xu, G., Wan, J., & Imran, M. (2019). Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterprise Information Systems, 1-25. doi:10.1080/17517575.2019.1633689 https://doi.org/10.1080/17517575.2019.1633689
  16. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. doi:10.1016/j.ijinfomgt.2014.10.007 https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  17. Heshmati, A. (2003). Productivity Growth, Efficiency and Outsourcing in Manufacturing and Service Industries. Journal of Economic Surveys, 17(1), 79-112. doi:10.1111/1467-6419.00189 https://doi.org/10.1111/1467- 6419.00189
  18. Deif, A. M. (2011). A system model for green manufacturing. Journal of Cleaner Production, 19(14), 1553- 1559. doi:10.1016/j.jclepro.2011.05.022 https://doi.org/10.1016/j.jclepro.2011.05.022
  19. Zheng, P., wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., … Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137- 150. doi:10.1007/s11465-018-0499-5 https://doi.org/10.1007/s11465-018-0499-5
  20. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data- driven smart manufacturing. Journal of Manufacturing Systems. doi:10.1016/j.jmsy.2018.01.006 https://doi.org/10.1016/j.jmsy.2018.01.006
  21. Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning-A review. Renewable and Sustainable Energy Reviews, 8(4), 365-381. doi:10.1016/j.rser.2003.12.007 https://doi.org/10.1016/j.rser.2003.12.007
  22. Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2019). Smart logistics: Study of the application of blockchain technology. Procedia Computer Science, 160, 266-271. doi:10.1016/j.procs.2019.09.467 https://doi.org/10.1016/j.procs.2019.09.467
  23. Shao, G., & Helu, M. (2020). Framework for a digital twin in manufacturing: scope and requirements. Manufacturing Letters. doi:10.1016/j.mfglet.2020.04.004 https://doi.org/10.1016/j.mfglet.2020.04.004
  24. Yu, L., Nazir, B., & Wang, Y. (2020). Intelligent power monitoring of building equipment based on Internet of Things technology. Computer Communications. doi:10.1016/j.comcom.2020.04.016 https://doi.org/10.1016/j.comcom.2020.04.016
  25. Chao Shang and Fengqi You, (2019) , Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era. https://doi.org/10.1016/j.eng.2019.01.019 https://doi.org/10.1016/j.eng.2019.01.019
  26. Issaoui, Y., Khiat, A., Bahnasse, A. et al. Toward Smart Logistics: Engineering Insights and Emerging Trends. Arch Computat Methods Eng (2020). https://doi.org/10.1007/s11831-020-09494-2 https://doi.org/10.1007/s11831-020-09494-2