Academia.eduAcademia.edu

Outline

Toward Polarization-Switched Molecular Pumps

2019, ACS Applied Energy Materials

https://doi.org/10.1021/ACSAEM.9B00252

Abstract

Pumping of fluids is universally performed by using mechanical or thermal compressors. We introduce a new solid-state molecular pumping approach induced by switching the adsorption affinity for a gas through polarization of a chromophore under an applied electric field. Mass spectrometry was used to trace refrigerant gas (difluoromethane) uptake on a chromophore-coated capacitor under applied voltage and subsequent desorption when the voltage and electrode polarization was removed, showing an exchange capacity of 0.11 mol of refrigerant/(L of chromophore). Calorimetry confirmed a reversible enthalpy change of 9 kcal/mol in the polarization-induced sorption−desorption process. The present work establishes the principle and feasibility of nonmechanical molecular pumping, which could be exploited to transport any fluid, opening numerous potential applications.

References (24)

  1. Yadav, A. K.; Ram Gopal, M.; Bhattacharyya, S. CO2 based natural circulation loops: new correlations for friction and heat transfer. Int. J. Heat Mass Transfer 2012, 55, 4621-4630.
  2. McGrail, B.; Jenks, J.; Abrams, W.; Motkuri, R.; Phillips, N.; Veldman, T.; Roberts, B. A Non-condensing Thermal Compression Power Generation System. Energy Procedia 2017, 129, 1041-1046.
  3. Clearfield, A. Flexible MOFs under stress: pressure and temperature. Dalton Transactions 2016, 45, 4100-4112.
  4. Fernandez, C. A.; Thallapally, P. K.; McGrail, B. P. Insights into the Temperature-Dependent "Breathing" of a Flexible Fluorinated Metal-Organic Framework. ChemPhysChem 2012, 13, 3275-3281.
  5. Moggach, S. A.; Bennett, T. D.; Cheetham, A. K. The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa. Angew. Chem. 2009, 121, 7221-7223.
  6. Frost, S.; Ulbricht, M. Thermoresponsive ultrafiltration membranes for the switchable permeation and fractionation of nanoparticles. J. Membr. Sci. 2013, 448, 1-11.
  7. Svec, F.; Frechet, J. M. Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules 1995, 28, 7580-7582.
  8. Lee, S. B.; Martin, C. R. pH-Switchable, Ion-Permselective Gold Nanotubule Membrane Based on Chemisorbed Cysteine. Anal. Chem. 2001, 73, 768-775.
  9. Nunes, S. P.; Behzad, A. R.; Hooghan, B.; Sougrat, R.; Karunakaran, M.; Pradeep, N.; Vainio, U.; Peinemann, K.-V. Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly. ACS Nano 2011, 5, 3516-3522.
  10. Akieh, M. N.; Ralph, S. F.; Bobacka, J.; Ivaska, A. Transport of metal ions across an electrically switchable cation exchange membrane based on polypyrrole doped with a sulfonated calix [6] arene. J. Membr. Sci. 2010, 354, 162-170.
  11. Lin, Y.; Cui, X.; Bontha, J. Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Environ. Sci. Technol. 2006, 40, 4004-4009.
  12. Fernandez, C. A.; Martin, P. C.; Schaef, T.; Bowden, M. E.; Thallapally, P. K.; Dang, L.; Xu, W.; Chen, X.; McGrail, B. P. An electrically switchable metal-organic framework. Sci. Rep. 2015, 4, 6114.
  13. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis, 7th ed.; Cengage Learning: Independence, KY, USA, 2017.
  14. Grossman, P. D., Colburn, J. C., Eds. Capillary electrophoresis: Theory and practice; Academic Press: New York, 1992.
  15. Litster, S.; Suss, M. E.; Santiago, J. G. A two-liquid electroosmotic pump using low applied voltage and power. Sens. Actuators, A 2010, 163, 311-314.
  16. Lehmann, V. The physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 1993, 140, 2836-2843.
  17. Dixon, D. A.; Dobbs, K. D.; Valentini, J. J. Amide-water and amide-amide hydrogen bond strengths. J. Phys. Chem. 1994, 98, 13435-13439.
  18. Kohl, P. A. Electrodeposition of gold. Modern Electroplating, Fifth Edition 2011, 115-130.
  19. Darr, J. H. Modeling of an automotive air conditioning compressor based on experimental data, Part of ACRC Project 09; Air Conditioning and Refrigeration Center (ACRC), College of Engineering, University of Illinois at Urbana-Champaign: Urbana, IL, USA, 1992.
  20. Alley, S., Jr; Scott, R. NMR studies of hydrogen bonding in hydrofluorocarbon solutions. J. Phys. Chem. 1963, 67, 1182-1187.
  21. Darr, J. H.; Crawford, R. R. Modeling of an Automotive Air Conditioning Compressor Based on Experimental Data, ACRC Technical Report TR-14; Air Conditioning and Refrigeration Center (ACRC), College of Engineering, University of Illinois at Urbana- Champaign: Urbana, IL, USA, 1992.
  22. Hendricks, T. J. Multi-variable optimization of electrically- driven vehicle air conditioning systems using transient performance analysis. Proceedings of SAE Vehicle Thermal Management Systems, Technical Paper 2001-01-1734; SAE International: Warrendale, PA, USA, 2003, DOI: 10.4271/2001-01-1734.
  23. Sabouni, R. Carbon dioxide adsorption by metal organic frameworks (Synthesis, Testing and Modeling). Ph.D. Thesis; The University of Western Ontario, London, Ontario, Canada, 2013.
  24. Masika, E.; Mokaya, R. Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Prog. Nat. Sci. 2013, 23, 308-316.