Academia.eduAcademia.edu

Outline

Artificial Supramolecular Pumps Powered by Light

2021, Chemistry – A European Journal

https://doi.org/10.1002/CHEM.202101163

Abstract

The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here, the design, synthesis and properties of pseudorotaxanes are described, in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behavior of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. NMR spectroscopy was used to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced nonequilibrium regimes.

References (55)

  1. V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim, 2008;
  2. J. Wang, Nanomachines: Fundamentals and Applications, Wiley- VCH, Weinheim, 2013;
  3. C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, Hoboken, 2017.
  4. S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081-10206;
  5. S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A. Leigh, Chem. Soc. Rev. 2017, 46, 2592- 2621;
  6. C. Pezzato, C. Cheng, J. F. Stoddart, R. D. Astumian, Chem. Soc. Rev. 2017, 46, 5491-5507;
  7. M. Baroncini, L. Casimiro, C. de Vet, J. Groppi, S. Silvi, A. Credi, ChemistryOpen 2018, 7, 169-179;
  8. M. Baroncini, S. Silvi, A. Credi, Chem. Rev. 2020, 120, 200-268.
  9. P. Martinez-Bulit, A. J. Stirk, S. J. Loeb, Trends Chem. 2019, 1, 588-600;
  10. I. Aprahamian, ACS Cent. Sci. 2020, 6, 347-358;
  11. S. Corra, M. Curcio, M. Baroncini, S. Silvi, A. Credi, Adv. Mater. 2020, 32, 1906064;
  12. Q. Zhang, D.-H. Qu, H. Tian, B. L. Feringa, Matter 2020, 3, 355-370;
  13. D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, N. Giuseppone, Chem. Rev. 2020, 120, 310-433.
  14. S. Kassem, A. T. L. Lee, D. A. Leigh, A. Markevicius, J. Sola, Nat. Chem. 2016, 8, 138-143;
  15. C. Schaefer, G. Ragazzon, B. Colasson, M. La Rosa, S. Silvi, A. Credi, ChemistryOpen 2016, 5, 120-124;
  16. S. Kassem, A. T. L. Lee, D. A. Leigh, A. Markevicius, D. J. Tetlow, N. Toriumi, Chem. Sci. 2021, 12, 2065-2070.
  17. M. A. Watson, S. L. Cockroft, Angew. Chem. Int. Ed. 2016, 55, 1345- 1349; Angew. Chem. 2016, 128, 1367-1371;
  18. S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang, T. Xu, Q. Lin, D.-H. Qu, X. Gong, Y. Yang, L. Zhu, H. Tian, J. Am. Chem. Soc. 2018, 140, 17992-17998;
  19. A. Credi, Angew. Chem. Int. Ed. 2019, 58, 4108-4110; Angew. Chem. 2019, 131, 4152-4155.
  20. D. S. Goodsell, The Machinery of Life. Copernicus, New York, 2009.
  21. Y. Qiu, Y. Feng, Q.-H. Guo, R. D. Astumian, J. F. Stoddart, Chem 2020, 6, 1952-1977.
  22. G. Ragazzon, M. Baroncini, S. Silvi, M. Venturi, A. Credi, Nat. Nanotechnol. 2015, 10, 70-75;
  23. L Casimiro, J. Groppi, M. Baroncini, M. La Rosa, A. Credi, S. Silvi, Photochem. Photobiol. Sci. 2018, 17, 734-740;
  24. A. Sabatino, E. Penocchio, G. Ragazzon, A. Credi, D. Frezzato, Angew. Chem. Int. Ed. 2019, 58, 14341-14348; Angew. Chem. 2019, 131, 14479- 14486.
  25. C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke, J. F. Stoddart, Nat. Nanotechnol. 2015, 10, 547-553;
  26. C. Pezzato, M. T. Nguyen, D. J. Kim, O. Anamimoghadam, L. Mosca, J. F. Stoddart, Angew. Chem. Int. Ed. 2018, 57, 9325-9329; Angew. Chem. Int. Ed. 2018, 130, 9469-9473;
  27. Y. Qiu, B. Song, C. Pezzato, D. Shen, W. Liu, L. Zhang, Y. Feng, Q.-H. Guo, K. Cai, W. Li, H. Chen, M. T. Nguyen, Y. Shi, C. Cheng, R. D. Astumian, X. Li, J. F. Stoddart, Science 2020, 368, 1247-1253.
  28. S. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, M. R. Wilson, Science 2017, 358, 340-343.
  29. P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1995, 34, 1865-1869; Angew. Chem. 1995, 107, 1997-2001;
  30. P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F. Stoddart, P. A. Tasker, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 709-728;
  31. P. R. Ashton, I. Baxter, M. C. T. Fyfe, F. M. Raymo, N. Spencer, J. F. Stoddart, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 1998, 120, 2297-2307;
  32. J. Groppi, L. Casimiro, M. Canton, S. Corra, M. Jafari-Nasab, G. Tabacchi, L. Cavallo, M. Baroncini, S. Silvi, E. Fois, A. Credi, Angew. Chem. Int. Ed. 2020, 59, 14825-14834; Angew. Chem. 2020, 132, 14935-14944.
  33. M. Baroncini, S. Silvi, M. Venturi, A. Credi, Chem. Eur. J. 2010, 16, 11580- 11587.
  34. M. Baroncini, S. Silvi, M. Venturi, A. Credi, Angew. Chem. Int. Ed. 2012, 51, 4223-4226; Angew. Chem. Int. Ed. 2012, 124, 4299-4302.
  35. G. Ragazzon, M. Baroncini, S. Silvi, M. Venturi, A. Credi, Beilstein J. Nanotechnol. 2015, 6, 2096-2104.
  36. M. Baroncini, A. Credi, S. Silvi, in Out-of-equilibrium Supramolecular Systems and Materials (Eds: N. Giuseppone, A. Walther), Wiley-VCH, Weinheim, 2021, pp. 305-336.
  37. R. D. Astumian, Faraday Discuss. 2016, 195, 583-597;
  38. M. Kathan, S. Hecht, Chem. Soc. Rev. 2017, 46, 5536-5550;
  39. M. Weissenfels, J. Gemen, R. Klajn, Chem 2021, 7, 23-37.
  40. A similar discussion can be made for overcrowded alkene rotary motors; see: E. M. Geertsema, S. Jan van der Molen, M. Martens, B. L. Feringa, Proc. Natl. Acad. Sci. USA 2009, 106, 16919-16924.
  41. G. Tabacchi, S. Silvi, M. Venturi, A. Credi, E. Fois, ChemPhysChem 2016, 17, 1913-1919.
  42. C. Feldmeier, H. Bartling, E. Riedle, R. M. Gschwind, J. Magn. Reson. 2013, 232, 39-44;
  43. P. Nitschke, N. Lokesh, R. M. Gschwind, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114, 86-134.
  44. For related studies on photoswitches, see: a) J. Kind, L. Kaltschnee, M. Leyendecker, C. M. Thiele, Chem. Commun. 2016, 52, 12506-12509;
  45. Mallo, P. T. Brown, H. Iranmanesh, T. S. C. MacDonald, M. J. Teusner, J. B. Harper, G. E. Ball, J. E. Beves, Chem. Commun. 2016, 52, 13576-13579;
  46. N. D. Dolinski, Z. A. Page, F. Eisenreich, J. Niu, S. Hecht, J. Read de Alaniz, C. J. Hawker, ChemPhotoChem 2017, 1, 125-131;
  47. M. M. Lerch, M. Medved, A. Lapini, A. D. Laurent, A. Iagatti, L. Bussotti, W. Szymanski, W. J. Buma, P-Foggi, M. Di Donato, B. L. Feringa, J. Phys. Chem. A 2018, 122, 955-964;
  48. T. J. Feuerstein, R. Muller, C. Barner- Kowollik, P. W. Roesky, Inorg. Chem. 2019, 58, 15479-15486;
  49. E. Stadler, S. Tassoti, P. Lentes, R. Herges, T. Glasnov, K. Zangger, G. Gescheidt, Anal. Chem. 2019, 91, 11367-11373;
  50. L. Cechova, J. Filo, M. Dracinsky, C. Slavov, D. Sun, Z. Janeba, T. Slanina, J. Wachtveitl, E. Prochazkova, M. Cigan, Angew. Chem. Int. Ed. 2020, 59, 15590-15594; Angew. Chem. 2020, 132, 15720-15724.
  51. S. Yu, N. D. McClenaghan, J.-L. Pozzo, Photochem. Photobiol. Sci. 2019, 18, 2102-2111.
  52. P. Tecilla, D. Bonifazi, ChemistryOpen 2020, 9, 538-553.
  53. M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of Photo- chemistry, 3 rd Edition, CRC Press, Boca Raton, 2006.
  54. J. C. Andrew, C. S. Wilcox J. Am. Chem. Soc. 1991, 113, 678-680;
  55. K. Connors, Binding Constants: The Measurement of Molecular Complex Stability, Wiley-Interscience, New York, 1987, Ch. 5, pp. 189-212. Manuscript received: March 31, 2021 Accepted manuscript online: May 5, 2021 Version of record online: June 2, 2021