Academia.eduAcademia.edu

Outline

Modeling bacterial chemotaxis inside a cell

Abstract

This paper describes a bacterial system that reproduces a population of bacteria that behave by simulating the internal reactions of each bacterial cell. The chemotaxis network of a cell is modulated by a hybrid approach that uses an algebraic model for the receptor clusters activity and an ordinary differential equation for the adaptation dynamics. The experiments are defined in order to simulate bacterial growth in an environment where nutrients are regularly added to it. The results show analysis of the motion obtained by some bacteria and their effects on the population behaviors generated by evolution. This evolution allows bacteria to have the ability to adapt themselves to better growth in the available food existed in its environment and to survive.

References (27)

  1. Berg, H. C., Brown, D. A., et al. (1972). Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature, 239(5374):500-504.
  2. Stewart, R., Russell, C., Roth, A., and Dahlquist, F. (1988). Interaction of cheb with chemotaxis signal transduction components in escherichia coli: modulation of the methylesterase activity and effects on cell swimming behavior. Cold Spring Harbor symposia on quantitative biology, 53:27-40.
  3. Lupas, A. and Stock, J. (1989). Phosphorylation of an nterminal regulatory domain activates the cheb methylesterase in bacterial chemotaxis. Journal of Biological Chemistry, 264(29):1989.
  4. Adler., J. (1975). Chemotaxis in bacteria. Annual Review of Biochemistry, 44:341-356.
  5. Bray, D., Bourret, R. B., and Simon, M. I. (1993). Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Molecular Biology of the Cell, 4(5):469.
  6. Levin, M. D., Morton-Firth, C. J., Abouhamad, W. N., Bourret, R. B., and Bray, D. (1998). Origins of individual swimming behavior in bacteria. Biophysical journal, 74(1):175-181.
  7. Spiro, P. A., Parkinson, J. S., and Othmer, H. G. (1997). A model of excitation and adaptation in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 94(14):7263-7268.
  8. Barkal, N. and Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387(6636):913-917.
  9. Mello, B. A. and Tu, Y. (2003). Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophysical journal, 84(5):2943.
  10. Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in an intracellular signalling pathway. Journal of Theoretical Biology, 192(1):117-128.
  11. Setayeshgar, S., Gear, C., Othmer, H., and Kevrekidis, I. (2005). Application of coarse integration to bacterial chemotaxis. Multiscale Modeling & Simulation, 4(1):307-327.
  12. Vladimirov, N., Løvdok, L., Lebiedz, D., and Sourjik, V. (2008). Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS computational biology, 4(12):e1000242.
  13. Bray, D., Levin, M. D., and Lipkow, K. (2007). The chemotactic behavior of computer-based surrogate bacteria. Current biology, 17(1):12-19.
  14. Berg, H. C. (2000). Motile behavior of bacteria. Physics Today, 53(1):24-30.
  15. Endres, R. G. and Wingreen, N. S. (2006). Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
  16. Keymer, J. E., Endres, R. G., Skoge, M., Meir, Y., and Wingreen, N. S. (2006). Chemosensing in escherichia coli: two regimes of two-state receptors. Proceedings of the National Academy of Sciences of the United States of America, 103(6):1786-1791.
  17. Mello, B. A. and Tu, Y. (2005). An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 102(48):17354-17359.
  18. Hansen, C. H., Endres, R. G., andWingreen, N. S. (2008). Chemotaxis in escherichia coli: a molecular model for robust precise adaptation. PLoS computational biology, 4(1):e1.
  19. Kollmann, M., Løvdok, L., Bartholom´e, K., Timmer, J., and Sourjik, V. (2005). Design principles of a bacterial signalling network. Nature, 438(7067):504-507.
  20. Stewart, R. C., Jahreis, K., and Parkinson, J. S. (2000). Rapid phosphotransfer to chey from a chea protein lacking the cheybinding domain. Biochemistry, 39(43):13157-13165.
  21. Sourjik, V. and Berg, H. C. (2002). Binding of the Escherichia coli response regulator chey to its target measured in vivo by fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences, 99(20):12669-12674.
  22. Cluzel, P., Surette, M., and Leibler, S. (2000). An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science, 287(5458):1652-1655.
  23. Shimizu, T. S., Aksenov, S. V., and Bray, D. (2003). A spatially extended stochastic model of the bacterial chemotaxis signaling pathway. Journal of molecular biology, 329(2):291-309.
  24. Adami, C., Ofria, C., and Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the National Academy of Sciences, 97(9):4463-4468.
  25. Emonet, T. and Cluzel, P. (2008). Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 105(9):3304-3309.
  26. Li M, Hazelbauer GL (2004) Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol 186: 3687-3694.
  27. Ouannes, N., Djedi, N., Duthen, Y., and Luga, H. (2012a). Following Food Sources by Artificial Creature in a Virtual Ecosystem. VIRTUAL WORLDS -Artificial Ecosystems and Digital Art Exploration.