Precision and Kinetics of Adaptation in Bacterial Chemotaxis
2010, Biophysical Journal
https://doi.org/10.1016/J.BPJ.2010.08.051Abstract
The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Fö rster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells expressing a single type of chemoreceptor (Tar). Quantifiable loss of precision of adaptation was observed at levels of the attractant MeAsp as low 10 mM, with pronounced differences in both kinetics and precision of adaptation between addition and removal of attractant. Quantitative modeling of the kinetic data suggests that loss of precise adaptation is due to a slowing of receptor methylation as available modification sites become scarce. Moreover, the observed kinetics of adaptation imply large cell-to-cell variation in adaptation rates-potentially providing genetically identical cells with the ability to ''hedge their bets'' by pursuing distinct chemotactic strategies.
References (39)
- Barkai, N., and S. Leibler. 1997. Robustness in simple biochemical networks. Nature. 387:913-917.
- Berg, H. C., and D. A. Brown. 1972. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature. 239:500-504.
- Sourjik, V., and H. C. Berg. 2002. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 99:123-127.
- Sourjik, V., and H. C. Berg. 2004. Functional interactions between receptors in bacterial chemotaxis. Nature. 428:437-441.
- Salman, H., and A. Libchaber. 2007. A concentration-dependent switch in the bacterial response to temperature. Nat. Cell Biol. 9:1098-1100.
- Sourjik, V. 2004. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12:569-576.
- Hazelbauer, G. L., J. J. Falke, and J. S. Parkinson. 2008. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33:9-19.
- Ames, P., C. A. Studdert, ., J. S. Parkinson. 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. USA. 99:7060-7065. Biophysical Journal 99(9) 2766-2774
- Studdert, C. A., and J. S. Parkinson. 2004. Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl. Acad. Sci. USA. 101: 2117-2122.
- Briegel, A., H. J. Ding, ., G. J. Jensen. 2008. Location and architec- ture of the Caulobacter crescentus chemoreceptor array. Mol. Micro- biol. 69:30-41.
- Stock, J. B., and D. E. Koshland, Jr. 1981. Changing reactivity of receptor carboxyl groups during bacterial sensing. J. Biol. Chem. 256:10826-10833.
- Terwilliger, T. C., J. Y. Wang, and D. E. Koshland, Jr. 1986. Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. J. Biol. Chem. 261:10814-10820.
- Shapiro, M. J., D. Panomitros, and D. E. Koshland, Jr. 1995. Interac- tions between the methylation sites of the Escherichia coli aspartate receptor mediated by the methyltransferase. J. Biol. Chem. 270: 751-755.
- Amin, D. N., and G. L. Hazelbauer. 2010. The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling. J. Bacteriol. 192:1193-1200.
- Yi, T.-M., Y. Huang, ., J. Doyle. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA. 97:4649-4653.
- Endres, R. G., and N. S. Wingreen. 2006. Precise adaptation in bacte- rial chemotaxis through ''assistance neighborhoods''. Proc. Natl. Acad. Sci. USA. 103:13040-13044.
- Hansen, C. H., R. G. Endres, and N. S. Wingreen. 2008. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLOS Comput. Biol. 4:e1.
- Berg, H. C., and P. M. Tedesco. 1975. Transient response to chemo- tactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. USA. 72: 3235-3239.
- Segall, J. E., S. M. Block, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 83:8987-8991.
- Tu, Y., T. S. Shimizu, and H. C. Berg. 2008. Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA. 105:14855-14860.
- Shimizu, T., Y. Tu, and H. C. Berg. 2010. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Syst. Biol. 6:382.
- Alon, U., M. G. Surette, ., S. Leibler. 1999. Robustness in bacterial chemotaxis. Nature. 397:168-171.
- Sourjik, V., A. Vaknin, ., H. C. Berg. 2007. In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol. 423:365-391.
- Mello, B. A., and Y. Tu. 2005. An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl. Acad. Sci. USA. 102:17354-17359.
- Keymer, J. E., R. G. Endres, ., N. S. Wingreen. 2006. Chemosensing in Escherichia coli: two regimes of two-state receptors. Proc. Natl. Acad. Sci. USA. 103:1786-1791.
- Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allo- steric transitions: a plausible model. J. Mol. Biol. 12:88-118.
- Endres, R. G., J. J. Falke, and N. S. Wingreen. 2007. Chemotaxis receptor complexes: from signaling to assembly. PLOS Comput. Biol. 3:e150.
- Friedman, N., L. Cai, and X. S. Xie. 2006. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97:168302.
- Cai, L., N. Friedman, and X. S. Xie. 2006. Stochastic protein expres- sion in individual cells at the single molecule level. Nature. 440: 358-362.
- Anand, G. S., P. N. Goudreau, and A. M. Stock. 1998. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry. 37:14038-14047.
- Li, M., and G. L. Hazelbauer. 2005. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56:1617-1626.
- Hansen, C. H., Y. Meir, ., N. S. Wingreen. 2008. Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol. Syst. Biol. 4:1-9.
- Kollmann, M., L. Løvdok, ., V. Sourjik. 2005. Design principles of a bacterial signaling network. Nature. 438:504-507.
- Korobkova, E., T. Emonet, ., P. Cluzel. 2004. From molecular noise to behavioral variability in a single bacterium. Nature. 428:574-578.
- Løvdok, L., K. Bentele, ., V. Sourjik. 2009. Role of translational coupling in robustness of bacterial chemotaxis pathway. PLoS Biol. 7:e1000171.
- Cluzel, P., M. Surette, and S. Leibler. 2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 287:1652-1655.
- Vladimirov, N., L. Løvdok, ., V. Sourjik. 2008. Dependence of bacte- rial chemotaxis on gradient shape and adaptation rate. PLOS Comput. Biol. 4:e1000242.
- Veening, J. W., W. K. Smits, and O. P. Kuipers. 2008. Bistability, epige- netics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193-210.
- Biophysical Journal 99(9) 2766-2774