Carbon Nanotube Based Spike Neuromorphic Devices and Circuits
2014
Abstract
Author(s): Shen, Alex | Advisor(s): Chen, Yong | Abstract: Fabrication and operation of carbon nanotube (CNT) based electronic devices called "synapstors," with the goal of emulating the functions of biological synapses, are reported. These synapstors have a structure akin to field-effect transistors, utilizing a random network of single-wall semiconducting CNTs as its conducting channel. Analog spike signal processing with low power consumption was demonstrated. These synaptic devices are capable of carrying out logic, learning, and memory functions, all in a single element. Analog spike neuromorphic circuits, composed of CNT synapstors and integrate-and-fire (IaF) circuits, are also reported. A positive voltage spike, applied on the gate electrode of a synapstor, could generate a postsynaptic current (PSC) via the CNT channel of the device. Multiple input spikes could be applied on individual CNT synapstors, which could be either excitatory or inhibitory and be connected...
References (28)
- Koch, C., Computation and the Single Neuron. Nature 1997, 385, 207-210.
- Byrne, J.; Byrne, J. H.; Roberts, J. L., From Molecules to Networks: an Introduction to Cellular and Molecular Neuroscience. Academic Press: 2009, pp. 470, 478, 544-545.
- Fischetti, M., Graphic Science: Computers vs. Brains. Scientific American Magazine 2011, 305, 104-104.
- Watson, A., Why Can't a Computer be More Like a Brain? Science 1997, 277, 1934-1936.
- Indiveri, G.; Chicca, E.; Douglas, R., A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity. IEEE Trans. Neural Netw. 2006, 17, 211-221.
- Arthur, J. V.; Boahen, K. A., Silicon-Neuron Design: A Dynamical Systems Approach. IEEE Trans. Circuits Syst. I 2011, 58, 1034-1043.
- Mahowald, M.; Douglas, R., A Silicon Neuron. Nature 1991, 354, 515-518.
- Poon, C. S., Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Frontiers in neuroscience 2011, 5.
- Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. S., A Scalable Neuristor Built with Mott Memristors. Nature Mater. 2013, 12, 114-117.
- Ramakrishnan, S.; Hasler, P. E.; Gordon, C., Floating Gate Synapses with Spike-Time- Dependent Plasticity. IEEE Trans. Biomed. Circuits and Systems 2011, 5, 244-252.
- Alibart, F.; Pleutin, S.; Guérin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D., An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse. Adv. Funct. Mater. 2010, 20, 330-337.
- Kuzum, D.; Jeyasingh, R. G.; Lee, B.; Wong, H.-S. P., Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing. Nano Lett. 2011, 12, 2179-2186.
- Hasegawa, T.; Ohno, T.; Terabe, K.; Tsuruoka, T.; Nakayama, T.; Gimzewski, J. K.; Aono, M., Learning Abilities Achieved by a Single Solid State Atomic Switch. Adv. Mater. 2010, 22, 1831-1834.
- Park, H.; Afzali, A.; Han, S.-J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W., High-Density Integration of Carbon Nanotubes via Chemical Self-Assembly. Nat. Nanotechnol. 2012, 7, 787-791.
- Erokhin, V.; Berzina, T.; Camorani, P.; Smerieri, A.; Vavoulis, D.; Feng, J.; Fontana, M. P., Material Memristive Device Circuits with Synaptic Plasticity: Learning and Memory. J. Bionanosci. 2011, 1, 24-30.
- Kim, K.; Chen, C. L.; Truong, Q.; Shen, A. M.; Chen, Y., A Carbon Nanotube Synapse with Dynamic Logic and Learning. Adv. Mater. 2013, 25, 1693-1698.
- Chen, C.; Kim, K.; Truong, Q.; Shen, A.; Li, Z.; Chen, Y., A Spiking Neuron Circuit Based on a Carbon Nanotube Transistor. Nanotechnology 2012, 23, 275202.
- Joshi, J.; Zhang, J.; Wang, C.; Hsu, C.-C.; Parker, A. C.; Zhou, C.; Ravishankar, U., A Biomimetic Fabricated Carbon Nanotube Synapse for Prosthetic Applications. IEEE LiSSA Workshop 2011, pp. 139-142.
- Nayak, A.; Ohno, T.; Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Gimzewski, J. K.; Aono, M., Controlling the Synaptic Plasticity of a Cu2S Gap Type Atomic Switch. Adv. Funct. Mater. 2012, 22, 3606-3613.
- Chen, Y.; McDaid, L.; Hall, S.; Kelly, P., A Programmable Facilitating Synapse Device. IEEE Int. Joint Conf. on Neural Netw. 2008, pp. 1615-1620.
- Indiveri, G., In A Low-Power Adaptive Integrate-and-Fire Neuron Circuit. IEEE Int. Symp. Circuits Syst. 2003, pp. IV-820-IV-823 vol. 4.
- Millman, J., Electronic devices and circuits. Singapore: McGraw-Hill: 1985. pp. 384-385.
- Dai, H., Electrical Properties and Field-Effect Transistors of Carbon Nanotubes. Nano: Brief Reports and Reviews 2006, 1, 1. References:
- Indiveri, G., In A Low-Power Adaptive Integrate-and-Fire Neuron Circuit. IEEE Int. Symp. Circuits Syst. 2003, pp. IV-820-IV-823 vol. 4.
- Debanne, D.; Guerineau, N. C.; Gähwiler, B.; Thompson, S. M., Paired-Pulse Facilitation and Depression at Unitary Synapses in Rat Hippocampus: Quantal Fluctuation Affects Subsequent Release. J. Physiol. 1996, 491, 163-176.
- Byrne, J.; Byrne, J. H.; Roberts, J. L., From Molecules to Networks: an Introduction to Cellular and Molecular Neuroscience. Academic Press: 2009, pp. 470, 478, 544-545. References:
- Indiveri, G., In A Low-Power Adaptive Integrate-and-Fire Neuron Circuit. IEEE Int. Symp. Circuits Syst. 2003, pp. IV-820-IV-823 vol. 4. References:
- Indiveri, G., In A Low-Power Adaptive Integrate-and-Fire Neuron Circuit. IEEE Int. Symp. Circuits Syst. 2003, pp. IV-820-IV-823 vol. 4.