Academia.eduAcademia.edu

Outline

Properties of forcing preserved by finite support iterations

1991

Abstract

We shall investigate some properties of forcing which are preserved by finite support iterations and which ensure that unbounded families in given partially ordered sets remain unbounded.

References (14)

  1. Bartoszyński T., Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281, 1 (1984), 209-213.
  2. Bukovský L., ∇-models and distributivity in Boolean algebras, Comment. Math. Univ. Carol. 9, 4 (1968), 595-612.
  3. Bukovský L., Rec law I., Repický M., Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. (to appear).
  4. Cichoń J., Pawlikowski J., On ideals of subsets of the plane and on Cohen real, J. Symb. Logic 51, 3 (1986), 560-569.
  5. Fremlin D. H., Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Semin. Initiation Anal. 23eme Anee-1983/84 Exp. No. 5, 13p.(1984)..
  6. Ihoda J., Shelah S., The Lebesgue measure and the Baire property: Laver's reals, preservation theorem for forcing, completing a chart of Kunen-Miller, preprint.
  7. Jech T., Set Theory, Academic Press, 1978.
  8. Kamburelis A., Iterations of Boolean algebras with measure, Arch. Math. Logic 29 (1989), 21-28.
  9. Krawczyk A., B(m) + A(c) A(m), preprint.
  10. Miller A. W., Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
  11. Raisonier J., Stern J., The strength of measurability hypothesis, Israel J. Math. 50, 4 (1985), 337-349.
  12. Repický M., Porous sets and additivity of Lebesgue measure, Real Analysis Exchange, 1989-1990.
  13. Truss J.K., Sets having caliber ℵ 1 , Proc. Logic Colloquium '76, Studies in Logic 87 (1977), 595-612.
  14. Matematický ústav SAV, Jesenná 5, 041 54 Košice, Czechoslovakia (Received September 9, 1990)