Bounded forcing axioms and the continuum
2001, Annals of Pure and Applied Logic
https://doi.org/10.1016/S0168-0072(00)00058-0Abstract
We show that bounded forcing axioms (for instance, the Bounded Proper Forcing Axiom and the Bounded Semiproper Forcing Axiom) are consistent with the existence of (ω2,ω2)-gaps and thus do not imply the Open Coloring Axiom. They are also consistent with Jensen's combinatorial principles for L at the level ω2, and therefore with the existence of an ω2-Suslin tree. We also show that the axiom we call implies , as well as a stationary reflection principle which has many of the consequences of Martin's Maximum for objects of size . Finally, we give an example of a so-called boldface bounded forcing axiom implying .
References (31)
- Q): Q forces that Ȧ is the range of an ¡ * -unbounded strictly ¡ * -increasing sequence r : ∈ b of reals and the ¡ * -increasing enumeration of Ȧ is an ¡ * -initial segment of r : ∈ b . 2 ( Ȧ; Ḃ; Q): Q forces the following statement: Ḃ = { Ḃ × {r }: ¡b; limit} and, for each limit ordinal ¡b, ˙ = Ȧ ; Ḃ is a gap, where Ȧ = r : ∈ . Fur- thermore, Ḃ ∩ Ḃ = ∅ if = and, if ¡b V [G ] , then the ¡ * -decreasing enumeration of Ḃ is an ¿ * -initial segment of the ¡ * -decreasing enumeration of Ḃ ". 3 ( Ȧ; Ȧ ; Q): Q forces that Ȧ = {{r : ¡ }: ¡! 2 }, where r : ¡b is the ¡ * - increasing enumeration of Ȧ". 4 ( Ȧ; Ḃ; Ȧ ; Ẋ ; Q): Q forces that Ẋ = Ȧ × {0} ∪ Ḃ × {1} ∪ Ȧ × {2}". We check through all 1 formulas ∃x'(x; y; P) of the relational language of type 2;
- Suppose P has already been constructed. Let ; ' (x; y; P) : ¡Ä be an enumeration of all pairs ; '(x; y; P) , where is a standard P -term for an element of H (! 2 ) and '(x; y; P) is a restricted formula of the relational language of type 2;
- If f( ) = ÿ; , then ÿ6 and ÿ ; ' ÿ (x; y; P) has already been deÿned. Let = ÿ and ' (x; y;
- = ' ÿ (x; y; P). Now let G be P -generic over V and work in V [G ]: Suppose there is Q = Q 0 * Q1 ∈ H (Ä) such that Q 0 is semiproper, Q 0 forces that Q1 is semiproper and Q forces H (! 2 );
- ∈; Ẋ [H 0 ] |= ∃x' (x; ; P), where ( 1 ∧ • • • ∧ 4 ) References
- U. Abraham, M. Rubin, S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of ℵ 1 -dense real order types, Ann. Pure Appl. Logic 29 (1985) 123-206.
- J. Bagaria, Fragments of Martin's Axiom and ∼ 1 3 sets of reals, Ann. Pure Appl. Logic 69 (1994) 1-25.
- J. Bagaria, Bounded forcing axioms as principles of generic absoluteness, Arch. Math. Logic 39 (2000) 393-401.
- J. Bagaria, W.H. Woodin, ∼ 1 n sets of reals, J. Symbolic Logic 60 (1997) 1379-1428.
- J.E. Baumgartner, Applications of the proper forcing axiom, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland Publ. Co., Amsterdam, 1984, pp. 913-959.
- M. Bekkali, in: Topics in Set Theory, Lecture Notes in Mathematics, vol. 1476, Springer, Berlin, 1991.
- M.R. Burke, Forcing axioms, in: C.A. Di Prisco, J.A. Larson, J. Bagaria, A.R.D. Mathias (Eds.), Set theory, Techniques and Applications, Kluwer Academic Publishers, Dordrecht, 1998, pp. 1-22.
- K.J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer, Berlin, 1984.
- Q. Feng, T. Jech, Projective stationary sets and strong re ection principle, J. London Math. Soc. 58 (1998) 271-283.
- M. Foreman, M. Magidor, S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultraÿlters. Part I, Ann. Math. 127 (1988) 1-47.
- U. Fuchs, Donder's version of Revised Countable Support, xxx.lanl.gov
- M. Goldstern,Tools for your forcing construction, Israel Math. Conf. Proc., vol. 6, 1993, pp. 305 -360.
- M. Goldstern, S. Shelah, The bounded proper forcing axiom, J. Symbolic Logic 60 (1995) 58-73.
- T. Jech, Set Theory, Academic Press, New York, 1978.
- K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- T. Miyamoto, Localized re ecting cardinals and weak segments of PFA, Preprint, 1996.
- M. Scheepers, Gaps in ! ! , Israel Mathematical Conf. Proc., vol. 6, 1993, pp. 439 -562.
- S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984) 1-47.
- S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer, Berlin, 1998.
- S. TodorÄ cevià c, Trees and linearly ordered sets, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland Publ. Co., Amsterdam, 1984.
- S. TodorÄ cevià c, A note on the proper forcing axiom, Axiomatic Set Theory, Contemporary Mathematics, vol. 31, AMS, Providence, RI, 1984, pp. 209 -218.
- S. TodorÄ cevià c, Partitioning pairs of countable ordinals, Acta Math. 159 (1987) 261-294.
- S. TodorÄ cevià c, in: Partition Problems in Topology, Contemporary Mathematics, vol. 84, AMS, Providence, RI, 1989.
- B. VeliÄ ckovià c, Applications of the open coloring axiom, in: H. Judah, W. Just, H. Woodin (Eds.), Set Theory of the Continuum, MSRI Berkeley, Springer, Berlin, 1992, pp. 137-154.
- B. VeliÄ ckovià c, Forcing axioms and stationary sets, Adv. Math. 94 (1992) 256-284.
- H. Woodin, in: The Axiom of Determinacy, Forcing Axioms, and the Non-Stationary Ideal, De Gruyter Series in Logic and its Applications, vol. 1, Berlin, New York, 1999.