Academia.eduAcademia.edu

Outline

Analysis of a new high resolution upwind compact scheme

2006, Journal of Computational Physics

https://doi.org/10.1016/J.JCP.2006.02.020

Abstract

A new high-resolution upwind compact scheme is presented and analyzed, along with several previously proposed schemes, for numerical dispersion-dissipation, anisotropy, phase damping, dispersion relation preservation property and numerical stability. The schemes are tested on problems of the propagation of a initially discontinuous wave and of the transport of a sharp scalar cone. A benchmark problem of aeroacoustics is solved with the present scheme, giving satisfactory resolution. The scheme compares well with the existing schemes for the range of properties considered desirable in high resolution schemes.

References (20)

  1. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1987.
  2. Z. Kopal, Numerical Analysis, second ed., Wiley, New York, 1961.
  3. S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42.
  4. R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM, Philadelphia, 1982.
  5. R.S. Hirsch, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys. 19 (1975) 90-109.
  6. Y. Adam, Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys. 24 (1977) 10-22.
  7. T. Kawamura, H. Takami, K. Kuwahara, New higher order upwind scheme for incompressible Navier-Stokes equations, Fluid Dynamics Research 1 (1985) 145-162.
  8. X. Zhong, High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, J. Comput. Phys. 144 (1998) 662-709.
  9. T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes, J. Comput. Phys. 192 (2003) 677-694.
  10. Y. Li, Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport, J. Comput. Phys. 133 (1997) 235-255.
  11. M.M. Rai, P. Moin, Direct simulations of turbulent flow using finite-difference schemes, J. Comput. Phys. 96 (1991) 15-53.
  12. D.W. Zingg, H. Lomax, H. Jurgens, High accuracy finite difference schemes for linear wave propagation, SIAM J. Sci. Comput. 17 (1996) 328-346.
  13. N.A. Adams Shariff, A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys. 127 (1996) 27-51.
  14. Z. Haras, S. Ta'asan, Finite difference schemes for long-time integration, J. Comput. Phys. 114 (1994) 265-279.
  15. P.C. Chu, C. Fan, A three-point sixth-order non-uniform combined compact difference scheme, J. Comput. Phys. 148 (1999) 663-674.
  16. R. Hixon, E. Turkel, Compact implicit maccormack-type schemes with high accuracy, J. Comput. Phys. 158 (2000) 51-70.
  17. J.M.C. Pereira, J.C.F. Pereira, Fourier analysis of several finite difference schemes for the one-dimensional unsteady convection- diffusion equation, Int. J. Numer. Meth. Fluids. 36 (2001) 417-439.
  18. B. Gustafsson, H.-O. Kreiss, A. Sundstrom, Stability theory of difference approximations for mixed initial boundary value problems II, Math. Comput. 26 (1972) 649-686.
  19. M.H. Carpenter, D. Gottlieb, S. Abarbanel, The stability of numerical boundary treatments for compact high-order finite difference schemes, J. Comput. Phys. 108 (1993) 272-295.
  20. C.K.W. Tam, J.C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262-281.