Papers by Gaurav Ganeriwal

Journal of Scientific Computing, 2004
Compact difference schemes have been investigated for their ability to capture discontinuities. A... more Compact difference schemes have been investigated for their ability to capture discontinuities. A new proposed scheme (Sengupta, Ganerwal and De (2003). J. Comp. Phys. 192(2), 677.) is compared with another from the literature Zhong (1998). J. Comp. Phys. 144, 622 that was developed for hypersonic transitional flows for their property related to spectral resolution and numerical stability. Solution of the linear convection equation is obtained that requires capturing discontinuities. We have also studied the performance of the new scheme in capturing discontinuous solution for the Burgers equation. A very simple but an effective method is proposed here in early diagnosis for evanescent discontinuities. At the discontinuity, we switch to a third order one-sided stencil, thereby retaining the high accuracy of solution. This produces solution with vastly reduced Gibbs' phenomenon of the solution. The essential causes behind Gibbs' phenomenon is also explained.

Journal of Computational Physics, 2003
Central and upwind compact schemes for spatial discretization have been analyzed with respect to ... more Central and upwind compact schemes for spatial discretization have been analyzed with respect to accuracy in spectral space, numerical stability and dispersion relation preservation. A von Neumann matrix spectral analysis is developed here to analyze spatial discretization schemes for any explicit and implicit schemes to investigate the full domain simultaneously. This allows one to evaluate various boundary closures and their effects on the domain interior. The same method can be used for stability analysis performed for the semi-discrete initial boundary value problems (IBVP). This analysis tells one about the stability for every resolved length scale. Some well-known compact schemes that were found to be G-K-S and time stable are shown here to be unstable for selective length scales by this analysis. This is attributed to boundary closure and we suggest special boundary treatment to remove this shortcoming. To demonstrate the asymptotic stability of the resultant schemes, numerical solution of the wave equation is compared with analytical solution. Furthermore, some of these schemes are used to solve two-dimensional Navier-Stokes equation and a computational acoustic problem to check their ability to solve problems for long time. It is found that those schemes, that were found unstable for the wave equation, are unsuitable for solving incompressible Navier-Stokes equation. In contrast, the proposed compact schemes with improved boundary closure and an explicit higher-order upwind scheme produced correct results. The numerical solution for the acoustic problem is compared with the exact solution and the quality of the match shows that the used compact scheme has the requisite DRP property.
Analysis of central and upwind compact schemes
Journal of Computational Physics, 2003
... 677-694. doi:10.1016/j.jcp.2003.07.015 | How to Cite or Link Using DOI Copyright © 2003 Elsev... more ... 677-694. doi:10.1016/j.jcp.2003.07.015 | How to Cite or Link Using DOI Copyright © 2003 Elsevier BV All rights reserved. Permissions & Reprints. Analysis of central and upwind compact schemes. TK Sengupta Corresponding ...

Journal of Scientific Computing, Jan 1, 2004
Compact difference schemes have been investigated for their ability to capture discontinuities. A... more Compact difference schemes have been investigated for their ability to capture discontinuities. A new proposed scheme . J. Comp. Phys. 192(2), 677.) is compared with another from the literature Zhong (1998). J. Comp. Phys. 144, 622 that was developed for hypersonic transitional flows for their property related to spectral resolution and numerical stability. Solution of the linear convection equation is obtained that requires capturing discontinuities. We have also studied the performance of the new scheme in capturing discontinuous solution for the Burgers equation. A very simple but an effective method is proposed here in early diagnosis for evanescent discontinuities. At the discontinuity, we switch to a third order one-sided stencil, thereby retaining the high accuracy of solution. This produces solution with vastly reduced Gibbs' phenomenon of the solution. The essential causes behind Gibbs' phenomenon is also explained.
Uploads
Papers by Gaurav Ganeriwal