Academia.eduAcademia.edu

Outline

Independent Neuro-Fuzzy Control System

2005, IFAC Proceedings Volumes

https://doi.org/10.3182/20050703-6-CZ-1902.02154

Abstract

The neuro fuzzy system based on two independent structures is described, the first a neuro-observer system developed by use of dynamical neural networks, and the second as the control system based on fuzzy logic system. These structures are described by independent way and their properties are analyzed. Besides, the neuro-fuzzy system performance is proved by the application to the Bergman th blood Insulin-Glucose interaction model, the simulations show the neuro-fuzzy output as the insulin infusor output (insulin concentration), the glucose concentration estimated state is also described, as well as the inferential rules and the membership functions in the fuzzy.

References (18)

  1. Bergman, D. (2002). Pathogenesis and prediction of diabetes mellitus: lessons from integrative physiology. Mt Sinai J Med pp. 280-290.
  2. Cabrera, A. I., V. H. Ortiz and H. M. Fonseca (2003). Redes neuronales estocásticas aplicadas al modelo dinámico de glucosa para pacientes diabéticos. In: SOMIB XXVI Congreso Nacional De Ingeniería Biomédica.
  3. Catfollis, T. (1994). Generating adaptive models of dynamic systems with recurrent neural networks. In: Conference on Neural Networks and IEEE World Congress on Computational Intelligence. pp. 3238-3243.
  4. Giccarella, G. and G. Mora, M.D. and Germani (1993). A luenberger-like observer for nonlinear systems. Int. J. Control 57, 537-556.
  5. Gorrini, V. and H. Bersini (1994). Recurrent fuzzy systems. Proc. IEEE Int. Conf. on Fuzzy Systems, pp. 193-198.
  6. Guyton, A. C. (2001). Tratado de Fisiología Médica. McGraw Hill -Interamericana.
  7. Jang, J. (1992). Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Networks 3(5), 714-723.
  8. Khoo, M. (2000). Physiological Control Systems: Analysis, Simulation, and Estimation. Metin Akay.
  9. Mouzouris, G. C. and J. M. Mendel (1997). Dynamic nonsingleton fuzzy logic systems for nonlinear modeling. IEEE Trans. Fuzzy Syst. 5(2), 199- 208.
  10. Narendra, K. S. and K. Parthasarathy (1995). Identification and control of dynamical systems using neural networks. IEEE Control Systems Magazine 15, 37-51.
  11. Park, Y. M., M. S. Choi and K. Y. Lee (1996). An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans. Neural Networks 7, 1099-1110.
  12. Poznyak, A. S., E. N. Sanchez and W. Yu (2001). Dynamic Neural Networks for Nonlinear Control: Identification, State Estimation and Trajectory Tracking. World Scientific, New Jersey, London, Singapore, Hong Kong.
  13. Poznyak, A. S., W. Yu, E. N. Sanchez and J. P. Perez (1999). Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Networks 10, 1402-1411.
  14. Takagi, H. and I. Hayashi (1991). Nn-driven fuzzy reasoning. Int. J. Approx. Reas. 5(3), 191-212.
  15. Takagi, H., N. Suzuki, T. Koda and Y. Kojima (1992). Neural networks designed on approximate reasoning architecture and their application. IEEE Trans. Neural Networks 3(5), 752-759.
  16. Theocharis, J. B. and G. Vachtsevanos (1996). Recursive learning algorithms for training fuzzy recurrent models. Int. J. Intell. Syst. 11(12), 1059-1098.
  17. Wang, L. X. (1997). A Course in Fuzzy Systems and Control. Englewood Cliffs, NJ: Prentice-Hall.
  18. Zhang, J. and A. J. Morris (1999). Recurrent neuro- fuzzy networks for nonlinear process modeling. IEEE Trans. Neural Networks 10(2), pp. 313- 326.