Academia.eduAcademia.edu

Outline

A simple model of a vesicle drop in a confined geometry

2010, Journal of Statistical Mechanics: …

https://doi.org/10.1088/1742-5468/2010/08/P08015

Abstract

We present the exact solution of a two-dimensional directed walk model of a drop, or half vesicle, confined between two walls, and attached to one wall. This model is also a generalisation of a polymer model of steric stabilisation recently investigated. We explore the competition between a sticky potential on the two walls and the effect of a pressure-like term in the system. We show that a negative pressure ensures the drop/polymer is unaffected by confinement when the walls are a macroscopic distance apart.

References (15)

  1. H. N. V. Temperley, Proc. Camb. Phil. Soc. 48, 638 (1952).
  2. S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz, volume 12, page 1, Academic, London, 1988.
  3. M. E. Fisher, J. Stat. Phys. 34, 667 (1984).
  4. A. L. Owczarek and T. Prellberg, J. Stat. Phys. 70, 1175 (1993).
  5. M. E. Fisher, A. J. Guttmann, and S. Whittington, J. Phys. A 24, 3095 (1991).
  6. R. Brak and A. J. Guttmann, J. Phys A. 23, 4581 (1990).
  7. R. Brak, A. L. Owczarek, and T. Prellberg, J. Stat. Phys. 76, 1101 (1994).
  8. T. Prellberg and A. L. Owczarek, J. Stat. Phys. 80, 755 (1995).
  9. E. J. Janse van Rensburg, E. Orlandini, A. L. Owczarek, A. Rechnitzer, and S. Whittington, J. Phys. A 38, L823 (2005).
  10. R. Brak, A. L. Owczarek, A. Rechnitzer, and S. Whittington, J. Phys. A 38, 4309 (2005).
  11. A. L. Owczarek, R. Brak, and A. Rechnitzer, J. Math. Chem. 45, 113 (2008).
  12. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cam- bridge, 2009
  13. G. Gasper and M. Rahman, volume 96 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2004.
  14. E. J. Janse van Rensburg, The Statistical Mechanics of Interacting Walks, Polygons, Ani- mals and Vesicles, Oxford University Press, Oxford, 2000.
  15. G. E. Andrews, R. Askey, and R. Roy, volume 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.