A necklace model for vesicles simulations in 2D
2014, International Journal for Numerical Methods in Fluids
https://doi.org/10.1002/FLD.3960Abstract
The aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force.
References (29)
- F. Hecht, O. Pironneau, A finite element software for PDEs: FreeFem++, http://www.freefem.org, 2010.
- C. Misbah, Vacillating Breathing and Tumbling of Vesicles under Shear Flow, Phys. Rev. Lett. 96 (2006) 028104, URL http://link.aps.org/doi/10.1103/PhysRevLett.96.028104.
- H. Noguchi, G. Gompper, Swinging and Tumbling of Fluid Vesicles in Shear Flow, Phys. Rev. Lett. 98 (2007) 128103, URL http://link.aps.org/doi/10.1103/PhysRevLett.98.128103.
- S. Meßlinger, B. Schmidt, H. Noguchi, G. Gompper, Dynamical regimes and hydrodynamic lift of viscous vesi- cles under shear, Phys. Rev. E 80 (2009) 011901, URL http://link.aps.org/doi/10.1103/PhysRevE.80. 011901.
- C. Pozrikidis, The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow, Journal of Fluid Mechanics 216 (1990) 231-254.
- H. Noguchi, G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proceedings of the National Academy of Sciences of the United States of America 102 (40) (2005) 14159.
- B. Kaoui, G. Biros, C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow?, Physical review letters 103 (18) (2009) 188101.
- A. Markvoort, R. Van Santen, P. Hilbers, Vesicle shapes from molecular dynamics simulations, J. Phys. Chem. B 110 (45) (2006) 22780-22785.
- J. Beaucourt, F. Rioual, T. Séon, T. Biben, C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E 69 (1) (2004) 11906.
- B. Kaoui, G. Ristow, I. Cantat, C. Misbah, W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow, Physical Review E 77 (2) (2008) 21903.
- G. Ghigliotti, T. Biben, C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics 653 (2010) 489-518.
- S. Veerapaneni, D. Gueyffier, D. Zorin, G. Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228 (7) (2009) 2334- 2353.
- A. Rahimian, S. Veerapaneni, G. Biros, Dynamic simulation of locally inextensible vesicles suspended in an arbi- trary two-dimensional domain, a boundary integral method, Journal of Computational Physics 229 (2010) 6466- 6484.
- G. Ghigliotti, A. Rahimian, G. Biros, C. Misbah, Vesicle Migration and Spatial Organization Driven by Flow Line Curvature, Physical Review Letters 106 (2) (2011) 28101.
- E. Maitre, T. Milcent, G. Cottet, A. Raoult, Y. Usson, Applications of level set methods in computational bio- physics, Mathematical and Computer Modelling 49 (11-12) (2009) 2161-2169.
- D. Salac, M. Miksis, A level set projection model of lipid vesicles in general flows, Journal of Computational Physics 230 (2011) 8192-8215.
- C. Bui, V. Lleras, O. Pantz, Dynamics of red blood cells in 2d, in: M. Ismail, B. Maury, J.-F. Gerbeau (Eds.), ESAIM: Proceedings, vol. 28, edpsciences.org, 182-194, 2009.
- A. Laadhari, P. Saramito, C. Misbah, Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods, URL http://hal.archives-ouvertes.fr/hal-00604145, 2011.
- V. Doyeux, V. Chabannes, C. Prud'Homme, M. Ismail, Simulation of Vesicle using Level Set Method solved by High Order Finite Element, URL http://hal.archives-ouvertes.fr/hal-00665007, submitted to ESAIM Proc, 2012.
- V. Doyeux, Y. Guyot, V. Chabannes, C. Prud'Homme, M. Ismail, Simulation of two-fluid flows using a finite ele- ment/level set method. Application to bubbles and vesicle dynamics, URL http://hal.archives-ouvertes. fr/hal-00665481, submitted to Elsevier Journal of Computational and Applied Mathematics (JCAM), 2012.
- X. Wang, Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches, Journal of Mathematical Biology 56 (3) (2008) 347-371.
- J. S. Lowengrub, A. Rätz, A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission, Phys. Rev. E 79 (3) (2009) 031926.
- Q. Du, L. Zhu, Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation, Journal of Computational Mathematics 24 (3) (2006) 265-280.
- K. Tsubota, S. Wada, Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell, Physical Review E 81 (1) (2010) 011910.
- J. Janela, A. Lefebvre, B. Maury, A penalty method for the simulation of fluid-rigid body interaction, in: ESAIM: Proceedings, vol. 14, edpsciences. org, 115-123, 2005.
- A. Lefebvre, Fluid-particle simulations with FreeFem++, in: ESAIM: Proceedings, vol. 18, edpsciences. org, 120- 132, 2007.
- B. Maury, A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping con- straint, Numer. Math. 102 (4) (2006) 649-679, ISSN 0029-599X, URL http://dx.doi.org/10.1007/ s00211-005-0666-6.
- B. Kaoui, J. Harting, C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Phys. Rev. E 83 (6) (2011) 066319.
- T. Biben, A. Farutin, C. Misbah, Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Phys. Rev. E 83 (2011) 031921, URL http://link.aps.org/doi/10.1103/PhysRevE.83. 031921.