Academia.eduAcademia.edu

Outline

S-modules in the category of schemes

2003

Abstract
sparkles

AI

This paper develops a theory of E ∞ -ring spectra and S-modules within the framework of Morel and Voevodsky's category of algebraic spaces, presenting an alternative to Jardine's approach using symmetric spectra. It introduces S-modules as a category of spectra with a strictly associative, commutative, and unital smash product applicable to smooth schemes over a field. Theoretical constructions and foundational theories are exemplified through algebraic Morava K(n)-theories, contributing to homotopy theory and paving the way for future investigations in homological operations and equivariant generalized cohomology theories.

References (20)

  1. A. K. Bousfield. Construction of factorizaition systems in categories. J. Pure Appl. Alg., 9 (1977) 207-220.
  2. A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. LNM 658, Springer-Verlag, 1978, pp. 80-130.
  3. A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations, LNM 304, Springer-Verlag, 1972.
  4. E. Dror-Farjoun. Cellular spaces, null spaces and homotopy localizations. LNM 1622, Springer- Verlag, 1993.
  5. W. G. Dywer and J. Spalinski. homotopy theories and model categories. Handbook of algebraic topology, I. M. James, ed., Elsevier, 1995, pp. 1-56.
  6. A. D. Elmendorf, I. Kriz, M. A. Mandell, J. P. May. Rings, modules, and algebras in stable homotopy theory, with an appendix by M. Cole. Mathematical Surveys and Monographs 47, AMS 1997.
  7. P. Hu and I. Kriz. A Real-oriented analogue of the Adams-Novikov spectral sequence. To appear.
  8. P. Hu and I. Kriz. Some remarks on Real and algebraic cobordism. In preparation.
  9. J. F. Jardine. A 1 -local symmetric spectra. Preprint, 1998.
  10. J. F. Jardine. Simplicial presheaves. J. Pure Appl. Algebra 47 (1987) 35-87.
  11. A. Joyal. Letter to A. Grothendieck.
  12. L. G. Lewis, J. P. May, M. Steinberger. Equivariant stable homotopy theory with contributions by J. E. McClure. LNM 1213. Springer-Verlag, 1986.
  13. S. MacLane. Category theory for the working mathematician. Springer-Verlag, 1971.
  14. M. A. Mandell, J. P. May, S. Schewede, and B. Shipley. Model categories of diagram spectra. Preprint, 1998.
  15. J. P. May. E ∞ ring spaces and E ∞ ring spectra, with contributions by F. Quinn, N. Ray, and J. Tornheave. LNM 577, Springer-Verlag, 1977.
  16. F. Morel, V. Voevodsky. A 1 -homotopy theory of schemes. Preprint, 1998.
  17. Y. Nisnevich. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Algebraic K-theory: connections with geometry and topology, pp. 241-342. Kluwer Acad. Publ., 1989.
  18. D. G. Quillen. Homotopical algebra. LNM 43, Springer-Verlag, 1967.
  19. V. Voevodsky. Bloch-Kato conjecture for Z/2-coefficients and algebraic Morava K-theories. Preprint, 1996.
  20. V. Voevodsky. The Milnor conjecture. Preprint, 1996.