Academia.eduAcademia.edu

Outline

Moduli spaces of commutative ring spectra

2004, Structured Ring Spectra

https://doi.org/10.1017/CBO9780511529955.009

Abstract

Let E be a homotopy commutative ring spectrum, and suppose the ring of cooperations E * E is flat over E * . We wish to address the following question: given a commutative E * -algebra A in E * E-comodules, is there an E∞-ring spectrum X with E * X ∼ = A as comodule algebras? We will formulate this as a moduli problem, and give a way -suggested by work of Dwyer, Kan, and Stover -of dissecting the resulting moduli space as a tower with layers governed by appropriate André-Quillen cohomology groups. A special case is A = E * E itself. The final section applies this to discuss the Lubin-Tate or Morava spectra En. * The authors were partially supported by the National Science Foundation. map(X, Y ) is weakly equivalence to the simplicial mapping set out of cofibrant model for X into a fibrant model for Y . Alternatively, one can write down map(X, Y ) as the nerve of an appropriate diagram category, such as the Dwyer-Kan hammock localization .

References (40)

  1. Adams, J.F., Stable homotopy and generalised cohomology, University of Chicago Press, Chicago, 1974.
  2. Atiyah, M. F., "Vector bundles and the Künneth formula", Topology, 1 (1962), 245-248.
  3. Baker, A., "A ∞ structures on some spectra related to Morava K-theories", Quart. J. Math. Oxford Ser. (2), 42 (1991), No. 168, 403-419.
  4. Basterra, M., "André-Quillen cohomology of commutative S-algebras", J. Pure and Applied Algebra, to appear.
  5. Berger, C. and Moerdijk, I,, "Axiomatic homotopy theory for operads", preprint 2002, http://front.math.ucdavis.edu/math.AT/0206094.
  6. Blanc, D., Dwyer, W., and Goerss, P., "The realization space of a Π- algebra: a moduli problem in algebraic topology", preprint 2002, available at the Hopf archive.
  7. Bousfield, A. K., "Homotopy spectral sequences and obstructions", Isr. J. Math. 66 (1989) 54-104.
  8. Bousfield, A. K. and Kan, D. M., Homotopy limits, completions, and lo- calizations, Lecture Notes in Math. 304 (2 nd corrected printing), Springer- Verlag, Berlin-Heidelberg-New York, 1987.
  9. Bousfield, A. K., "Cosimplicial resolutions and homotopy spectral se- quences in model categories", manuscript, University of Illinois at Chicago, 2001.
  10. Bousfield, A. K. and Friedlander, E. M., "Homotopy theory of Γ-spaces, spectra, and bisimplicial sets", Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math, 658, 80-130, Springer-Verlag, Berlin 1978.
  11. Cohen, F. R., Lada, T., and May, J. P., The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin, 1976.
  12. Dwyer, W. G. and Kan, D. M., "A classification theorem for diagrams of simplicial sets", Topology, 23 (1984) No.2, 139-155.
  13. Dwyer, W. G. and Kan, D. M., "Function complexes in homotopical alge- bra, Topology, 18 (1980), No. 4, 427-440.
  14. W. G. Dwyer, D. M. Kan, C. R. Stover, E 2 model category structure for pointed simplicial spaces," J. of Pure and Applied Algebra 90 (1993), 137- 152.
  15. W. G. Dwyer, D. M. Kan, C. R. Stover, "The bigraded homotopy groups π i,j X of a pointed simplicial space X", J. of Pure and Applied Algebra 103 (1995), 167-188.
  16. A. D. Elmendorff, I. Kriz, M. A. Mandell, J. P. May, "Rings, modules, and algebras in stable homotopy theory", Mathematical Surveys and Mono- graphs 47, AMS, Providence, RI, 1996.
  17. Goerss, P. G., "André-Quillen cohomology and the homotopy groups of mapping spaces: understanding the E 2 term of the Bousfield-Kan spectral sequence," J. of Pure and Applied Algebra 63 (1990), pp. 113-153.
  18. Goerss, P. G. and Hopkins, M. J., "André-Quillen (co)-homology for simpli- cial algebras over simplicial operads", Une dégustation topologique: homo- topy theory in the Swiss Alps (Arolla, 1999), Contemp. Math., 265, 41-85, Amer. Math. Soc., Providence,RI, 2000.
  19. Heller, A., "On the representability of homotopy functors", J. London Math. Soc. 23 (1981), 551-562.
  20. Hirschhorn, P., Model categories and their localizations, Mathematical Sur- veys and Monographs, 99, American Mathematical Society, Providence, RI, 2002.
  21. Hovey, M., Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, Providence, RI, 1999.
  22. Hovey, M. and Shipley, B. and Smith, J., "Symmetric spectrai", J. Amer. Math. Soc., 13 (2000) No. 1, 149-208.
  23. Illusie, L,, Complexe cotangent et déformations. I, Lecture Notes in Math- ematics, Vol. 239, Springer-Verlag, Berlin, 1971.
  24. Jardine, J. F., "Bousfield's E 2 model theory for simplicial objecst", preprint University of Western Ontario, 2002.
  25. Lubin, J. and Tate, J., "Formal moduli for one-parameter formal Lie groups", Bull. Soc. Math. France 94 (1966), 49-60.
  26. Lewis, L. G., Jr., May, J. P., Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin, 1986.
  27. Mandell, M. A. and May, J. P. and Schwede, S. and Shipley, B., "Model categories of diagram spectra", Proc. London Math. Soc. (3), 82 (2001), No. 2, 441-512.
  28. May, J.P., "A general approach to Steenrod operations", The Steenrod Al- gebra and its Applications (Proc. Conf. to Celebrate N.E. Steenrod's Sixti- eth Birthday, Battelle Memorial Inst. Columbus, Ohio, 1970, pp. 153-231, Lecture Notes in Mathematics, Vol. 168, Springer-Verlag, Berlin.
  29. Miller, H., "The Sullivan conjecture on maps from classifying spaces," Ann. of Math. 120 (1984), pp. 39-87.
  30. Quillen, D.G., On the (co)-homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65-87.
  31. Quillen D.G., Homotopical Algebra, Lecture Notes in Math. 43, Springer- Verlag, Berlin-Heidelberg-New York, 1967.
  32. Reedy, C. L.,"Homotopy theory of model categories", Preprint, 1973. Avail- able from http://math.mit.edu/~psh.
  33. Rezk, C. W., "Spaces of algebra structures and cohomology of operads", Thesis, MIT, 1996.
  34. Rezk, C. W., "Notes on the Hopkins-Miller theorem", in Homotopy Theory via Algebraic Geometry and Group Representations, M. Mahowald and S. Priddy, eds., Contemporary Math. 220 (1998) 313-366.
  35. Robinson, A., "Obstruction theory and the strict associativity of Morava K-theory," Advances in homotopy theory, London Math. Soc. Lecture Notes 139 (1989), 143-152.
  36. Robinson, A., "Gamma homology, Lie representations and E ∞ multiplica- tions", Invent. Math., 152 (2003) No. 2, 331-348.
  37. Robinson, A. and Whitehouse, S., "Operads and Γ-homology of commuta- tive rings", Math. Proc. Cambridge Philos. Soc., 132 (2002), No. 2, 197-234.
  38. Stover, C. R., "A Van Kampen spectral sequence for higher homotopy groups," Topology 29 (1990), 9-26.
  39. Strickland, N. P., "Gross-Hopkins duality", Topology, 39 (2000) No. 5 (1021-1033).
  40. Department of Mathematics, Northwestern University, Evanston IL 60208 pgoerss@math.nwu.edu Department of Mathematics, MIT, Cambridge MA, 02139 mjh@math.mit.edu