Moduli spaces of commutative ring spectra
2004, Structured Ring Spectra
https://doi.org/10.1017/CBO9780511529955.009Abstract
Let E be a homotopy commutative ring spectrum, and suppose the ring of cooperations E * E is flat over E * . We wish to address the following question: given a commutative E * -algebra A in E * E-comodules, is there an E∞-ring spectrum X with E * X ∼ = A as comodule algebras? We will formulate this as a moduli problem, and give a way -suggested by work of Dwyer, Kan, and Stover -of dissecting the resulting moduli space as a tower with layers governed by appropriate André-Quillen cohomology groups. A special case is A = E * E itself. The final section applies this to discuss the Lubin-Tate or Morava spectra En. * The authors were partially supported by the National Science Foundation. map(X, Y ) is weakly equivalence to the simplicial mapping set out of cofibrant model for X into a fibrant model for Y . Alternatively, one can write down map(X, Y ) as the nerve of an appropriate diagram category, such as the Dwyer-Kan hammock localization .
References (40)
- Adams, J.F., Stable homotopy and generalised cohomology, University of Chicago Press, Chicago, 1974.
- Atiyah, M. F., "Vector bundles and the Künneth formula", Topology, 1 (1962), 245-248.
- Baker, A., "A ∞ structures on some spectra related to Morava K-theories", Quart. J. Math. Oxford Ser. (2), 42 (1991), No. 168, 403-419.
- Basterra, M., "André-Quillen cohomology of commutative S-algebras", J. Pure and Applied Algebra, to appear.
- Berger, C. and Moerdijk, I,, "Axiomatic homotopy theory for operads", preprint 2002, http://front.math.ucdavis.edu/math.AT/0206094.
- Blanc, D., Dwyer, W., and Goerss, P., "The realization space of a Π- algebra: a moduli problem in algebraic topology", preprint 2002, available at the Hopf archive.
- Bousfield, A. K., "Homotopy spectral sequences and obstructions", Isr. J. Math. 66 (1989) 54-104.
- Bousfield, A. K. and Kan, D. M., Homotopy limits, completions, and lo- calizations, Lecture Notes in Math. 304 (2 nd corrected printing), Springer- Verlag, Berlin-Heidelberg-New York, 1987.
- Bousfield, A. K., "Cosimplicial resolutions and homotopy spectral se- quences in model categories", manuscript, University of Illinois at Chicago, 2001.
- Bousfield, A. K. and Friedlander, E. M., "Homotopy theory of Γ-spaces, spectra, and bisimplicial sets", Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math, 658, 80-130, Springer-Verlag, Berlin 1978.
- Cohen, F. R., Lada, T., and May, J. P., The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin, 1976.
- Dwyer, W. G. and Kan, D. M., "A classification theorem for diagrams of simplicial sets", Topology, 23 (1984) No.2, 139-155.
- Dwyer, W. G. and Kan, D. M., "Function complexes in homotopical alge- bra, Topology, 18 (1980), No. 4, 427-440.
- W. G. Dwyer, D. M. Kan, C. R. Stover, E 2 model category structure for pointed simplicial spaces," J. of Pure and Applied Algebra 90 (1993), 137- 152.
- W. G. Dwyer, D. M. Kan, C. R. Stover, "The bigraded homotopy groups π i,j X of a pointed simplicial space X", J. of Pure and Applied Algebra 103 (1995), 167-188.
- A. D. Elmendorff, I. Kriz, M. A. Mandell, J. P. May, "Rings, modules, and algebras in stable homotopy theory", Mathematical Surveys and Mono- graphs 47, AMS, Providence, RI, 1996.
- Goerss, P. G., "André-Quillen cohomology and the homotopy groups of mapping spaces: understanding the E 2 term of the Bousfield-Kan spectral sequence," J. of Pure and Applied Algebra 63 (1990), pp. 113-153.
- Goerss, P. G. and Hopkins, M. J., "André-Quillen (co)-homology for simpli- cial algebras over simplicial operads", Une dégustation topologique: homo- topy theory in the Swiss Alps (Arolla, 1999), Contemp. Math., 265, 41-85, Amer. Math. Soc., Providence,RI, 2000.
- Heller, A., "On the representability of homotopy functors", J. London Math. Soc. 23 (1981), 551-562.
- Hirschhorn, P., Model categories and their localizations, Mathematical Sur- veys and Monographs, 99, American Mathematical Society, Providence, RI, 2002.
- Hovey, M., Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, Providence, RI, 1999.
- Hovey, M. and Shipley, B. and Smith, J., "Symmetric spectrai", J. Amer. Math. Soc., 13 (2000) No. 1, 149-208.
- Illusie, L,, Complexe cotangent et déformations. I, Lecture Notes in Math- ematics, Vol. 239, Springer-Verlag, Berlin, 1971.
- Jardine, J. F., "Bousfield's E 2 model theory for simplicial objecst", preprint University of Western Ontario, 2002.
- Lubin, J. and Tate, J., "Formal moduli for one-parameter formal Lie groups", Bull. Soc. Math. France 94 (1966), 49-60.
- Lewis, L. G., Jr., May, J. P., Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin, 1986.
- Mandell, M. A. and May, J. P. and Schwede, S. and Shipley, B., "Model categories of diagram spectra", Proc. London Math. Soc. (3), 82 (2001), No. 2, 441-512.
- May, J.P., "A general approach to Steenrod operations", The Steenrod Al- gebra and its Applications (Proc. Conf. to Celebrate N.E. Steenrod's Sixti- eth Birthday, Battelle Memorial Inst. Columbus, Ohio, 1970, pp. 153-231, Lecture Notes in Mathematics, Vol. 168, Springer-Verlag, Berlin.
- Miller, H., "The Sullivan conjecture on maps from classifying spaces," Ann. of Math. 120 (1984), pp. 39-87.
- Quillen, D.G., On the (co)-homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65-87.
- Quillen D.G., Homotopical Algebra, Lecture Notes in Math. 43, Springer- Verlag, Berlin-Heidelberg-New York, 1967.
- Reedy, C. L.,"Homotopy theory of model categories", Preprint, 1973. Avail- able from http://math.mit.edu/~psh.
- Rezk, C. W., "Spaces of algebra structures and cohomology of operads", Thesis, MIT, 1996.
- Rezk, C. W., "Notes on the Hopkins-Miller theorem", in Homotopy Theory via Algebraic Geometry and Group Representations, M. Mahowald and S. Priddy, eds., Contemporary Math. 220 (1998) 313-366.
- Robinson, A., "Obstruction theory and the strict associativity of Morava K-theory," Advances in homotopy theory, London Math. Soc. Lecture Notes 139 (1989), 143-152.
- Robinson, A., "Gamma homology, Lie representations and E ∞ multiplica- tions", Invent. Math., 152 (2003) No. 2, 331-348.
- Robinson, A. and Whitehouse, S., "Operads and Γ-homology of commuta- tive rings", Math. Proc. Cambridge Philos. Soc., 132 (2002), No. 2, 197-234.
- Stover, C. R., "A Van Kampen spectral sequence for higher homotopy groups," Topology 29 (1990), 9-26.
- Strickland, N. P., "Gross-Hopkins duality", Topology, 39 (2000) No. 5 (1021-1033).
- Department of Mathematics, Northwestern University, Evanston IL 60208 pgoerss@math.nwu.edu Department of Mathematics, MIT, Cambridge MA, 02139 mjh@math.mit.edu