Academia.eduAcademia.edu

Outline

On algebras of Banach algebra-valued bounded continuous functions

2016, Rocky Mountain Journal of Mathematics

https://doi.org/10.1216/RMJ-2016-46-2-389

Abstract

Let X be a completely regular Hausdorff space. We denote by C(X, A) the algebra of all continuous functions on X with values in a complex commutative unital Banach algebra A. Let C b (X, A) be its subalgebra consisting of all bounded continuous functions and endowed with the uniform norm. In this paper, we give conditions equivalent to the density of a natural continuous image of X × M(A) in the maximal ideal space of C b (X, A).

References (11)

  1. J. Arhippainen, On the ideal structure of algebras of LMC-algebras valued functions, Stud. Math. 101 (1992), 311-318.
  2. R.C. Buck, Continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
  3. S. Dierolf, K.H. Schröder and J. Wengenroth, Characters on certain function algebras, Funct. Approx. Comm. Math. 26 (1998), 53-58.
  4. W.E. Dietrich, Jr., The maximal ideal space of the topological algebra C(X, E), Math. Ann. 183 (1969), 201-212.
  5. Z. Ercan and S. Onal, A remark on the homomorphism on C(X), Proc. Amer. Math. Soc. 133 (12) (2005), 3609-3611.
  6. W. Govaerts, Homomorphisms of weighted algebras of continuous functions, Ann. Mat. Pura Appl. 116 (1978), 151-158.
  7. A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8 (1957), 246-259.
  8. W.J. Hery, Maximal ideal in algebras of topological algebra valued functions, Pac. J. Math. 65 (1976), 365-373.
  9. L.A Kahn, Linear topological spaces of continuous vector-valued functions, Academic Publ., Ltd., 2013-DOI: 10.12732/acadpubl.201301.
  10. M.A. Naimark, Normed algebras, 1972, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1972.
  11. C.E. Rickart, General theory of Banach algebras, R.E. Krieger Publishing Company, Huntington, NY, 1974 (original edition, D. Van Nostrand Reinhold, 1960). Universidad Nacional Autónoma de México, Instituto de Matemáticas, Ciudad Universitaria, México D.F. 04510, México Email address: hpeimbert@gmail.com