Academia.eduAcademia.edu

Outline

A fresh look into the interacting dark matter scenario

2018, Journal of Cosmology and Astroparticle Physics

https://doi.org/10.1088/1475-7516/2018/06/007

Abstract

The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matterphoton elastic scattering cross section of σ γDM < 8×10 −10 σ T (m DM /GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.

References (203)

  1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175].
  2. L. Bergström, Dark Matter Candidates, New J. Phys. 11 (2009) 105006 [0903.4849].
  3. H. Baer, K.-Y. Choi, J. E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [1407.0017].
  4. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A32 (2017) 1730023 [1706.07442].
  5. L. Roszkowski, E. M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches -current issues and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [1707.06277].
  6. M. R. Buckley and A. H. G. Peter, Gravitational probes of dark matter physics, 1712.06615.
  7. Planck Collaboration collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [1502.01589].
  8. BOSS Collaboration collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [1607.03155].
  9. J. S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, Ann. Rev. Astron. Astrophys. 55 (2017) 343 [1707.04256].
  10. A. A. Klypin, A. V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240].
  11. B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524 (1999) L19 [astro-ph/9907411].
  12. M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat, The Milky Way's bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [1111.2048].
  13. B. Moore, T. R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164].
  14. V. Springel et al., The Aquarius Project: the subhalos of galactic halos, Mon. Not. Roy. Astron. Soc. 391 (2008) 1685 [0809.0898].
  15. S. Y. Kim, A. H. G. Peter and J. R. Hargis, There is No Missing Satellites Problem, 1711.06267.
  16. T. Sawala et al., The abundance of (not just) dark matter haloes, Mon. Not. Roy. Astron. Soc. 431 (2013) 1366 [1206.6495].
  17. T. Sawala et al., The APOSTLE simulations: solutions to the Local Group's cosmic puzzles, Mon. Not. Roy. Astron. Soc. 457 (2016) 1931 [1511.01098].
  18. A. Fattahi et al., The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem, 1607.06479.
  19. T. Nakama, J. Chluba and M. Kamionkowski, Shedding light on the small-scale crisis with CMB spectral distortions, Phys. Rev. D95 (2017) 121302 [1703.10559].
  20. P. Bode, J. P. Ostriker and N. Turok, Halo formation in warm dark matter models, Astrophys. J. 556 (2001) 93 [astro-ph/0010389].
  21. A. Knebe, J. E. G. Devriendt, A. Mahmood and J. Silk, Merger histories in WDM structure formation scenarios, Mon. Not. Roy. Astron. Soc. 329 (2002) 813 [astro-ph/0105316].
  22. P. Colin, O. Valenzuela and V. Avila-Reese, On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities, Astrophys. J. 673 (2008) 203 [0709.4027].
  23. J. Zavala et al., The velocity function in the local environment from LCDM and LWDM constrained simulations, Astrophys. J. 700 (2009) 1779 [0906.0585].
  24. R. E. Smith and K. Markovic, Testing the Warm Dark Matter paradigm with large-scale structures, Phys. Rev. D84 (2011) 063507 [1103.2134].
  25. M. R. Lovell et al., The Haloes of Bright Satellite Galaxies in a Warm Dark Matter Universe, Mon. Not. Roy. Astron. Soc. 420 (2012) 2318 [1104.2929].
  26. A. Schneider, R. E. Smith, A. V. Macciò and B. Moore, Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models, Mon. Not. Roy. Astron. Soc. 424 (2012) 684 [1112.0330].
  27. E. Polisensky and M. Ricotti, Massive Milky Way Satellites in Cold and Warm Dark Matter: Dependence on Cosmology, Mon. Not. Roy. Astron. Soc. 437 (2014) 2922 [1310.0430].
  28. M. R. Lovell et al., The properties of warm dark matter haloes, Mon. Not. Roy. Astron. Soc. 439 (2014) 300 [1308.1399].
  29. R. Kennedy, C. Frenk, S. Cole and A. Benson, Constraining the warm dark matter particle mass with Milky Way satellites, Mon. Not. Roy. Astron. Soc. 442 (2014) 2487 [1310.7739].
  30. C. Destri, H. J. de Vega and N. G. Sánchez, Warm dark matter primordial spectra and the onset of structure formation at redshift z, Phys. Rev. D88 (2013) 083512 [1308.1109].
  31. R. E. Angulo, O. Hahn and T. Abel, The Warm DM halo mass function below the cut-off scale, Mon. Not. Roy. Astron. Soc. 434 (2013) 3337 [1304.2406].
  32. A. J. Benson et al., Dark Matter Halo Merger Histories Beyond Cold Dark Matter: I - Methods and Application to Warm Dark Matter, Mon. Not. Roy. Astron. Soc. 428 (2013) 1774 [1209.3018].
  33. A. Kamada, N. Yoshida, K. Kohri and T. Takahashi, Structure of Dark Matter Halos in Warm Dark Matter models and in models with Long-Lived Charged Massive Particles, JCAP 1303 (2013) 008 [1301.2744].
  34. M. R. Lovell et al., Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter, Mon. Not. Roy. Astron. Soc. 461 (2016) 60 [1511.04078].
  35. A. D. Ludlow et al., The Mass-Concentration-Redshift Relation of Cold and Warm Dark Matter Halos, Mon. Not. Roy. Astron. Soc. 460 (2016) 1214 [1601.02624].
  36. L. Wang et al., The galaxy population in cold and warm dark matter cosmologies, Mon. Not. Roy. Astron. Soc. 468 (2017) 4579 [1612.04540].
  37. M. R. Lovell et al., Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter, Mon. Not. Roy. Astron. Soc. 468 (2017) 2836 [1611.00005].
  38. E. Bulbul et al., Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J. 789 (2014) 13 [1402.2301].
  39. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett. 113 (2014) 251301 [1402.4119].
  40. A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center, Phys. Rev. Lett. 115 (2015) 161301 [1408.2503].
  41. N. Cappelluti et al., Searching for the 3.5 keV Line in the Deep Fields with Chandra: the 10 Ms observations, Astrophys. J. 854 (2018) 179 [1701.07932].
  42. V. Iršič et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D96 (2017) 023522 [1702.01764].
  43. C. Yèche, N. Palanque-Delabrouille, J. Baur and H. du Mas des Bourboux, Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100, JCAP 1706 (2017) 047 [1702.03314].
  44. S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287].
  45. B. Bozek et al., Resonant Sterile Neutrino Dark Matter in the Local and High-z Universe, Mon. Not. Roy. Astron. Soc. 459 (2016) 1489 [1512.04544].
  46. C. Boehm, H. Mathis, J. Devriendt and J. Silk, Non-linear evolution of suppressed dark matter primordial power spectra, Mon. Not. Roy. Astron. Soc. 360 (2005) 282 [astro-ph/0309652].
  47. C. Boehm, J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh and S. Pascoli, Using the Milky Way satellites to study interactions between cold dark matter and radiation, Mon. Not. Roy. Astron. Soc. 445 (2014) L31 [1404.7012].
  48. J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh, C. Boehm and S. Pascoli, Dark matter-radiation interactions: the impact on dark matter haloes, Mon. Not. Roy. Astron. Soc. 449 (2015) 3587 [1412.4905].
  49. J. A. Schewtschenko et al., Dark matter-radiation interactions: the structure of Milky Way satellite galaxies, Mon. Not. Roy. Astron. Soc. 461 (2016) 2282 [1512.06774].
  50. F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, Phys. Rev. D89 (2014) 063517 [1310.3278].
  51. M. R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson and M. Vogelsberger, Scattering, Damping, and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers, Phys. Rev. D90 (2014) 043524 [1405.2075].
  52. M. Vogelsberger et al., ETHOS an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems, Mon. Not. Roy. Astron. Soc. 460 (2016) 1399 [1512.05349].
  53. F.-Y. Cyr-Racine et al., ETHOSan effective theory of structure formation: From dark particle physics to the matter distribution of the Universe, Phys. Rev. D93 (2016) 123527 [1512.05344].
  54. L. G. van den Aarssen, T. Bringmann and C. Pfrommer, Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?, Phys. Rev. Lett. 109 (2012) 231301 [1205.5809].
  55. T. Bringmann, H. T. Ihle, J. Kersten and P. Walia, Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter, Phys. Rev. D94 (2016) 103529 [1603.04884].
  56. A. A. de Laix, R. J. Scherrer and R. K. Schaefer, Constraints of selfinteracting dark matter, Astrophys. J. 452 (1995) 495 [astro-ph/9502087].
  57. D. N. Spergel and P. J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386].
  58. C. S. Kochanek and M. J. White, A Quantitative study of interacting dark matter in halos, Astrophys. J. 543 (2000) 514 [astro-ph/0003483].
  59. J. L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 0907 (2009) 004 [0905.3039].
  60. A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett. 106 (2011) 171302 [1011.6374].
  61. M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in Self-Interacting Galactic Dark Matter Haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [1201.5892].
  62. M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [1208.3025].
  63. A. H. G. Peter, M. Rocha, J. S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [1208.3026].
  64. B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803 [1310.6337].
  65. M. Vogelsberger, J. Zavala, C. Simpson and A. Jenkins, Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter, Mon. Not. Roy. Astron. Soc. 444 (2014) 3684 [1405.5216].
  66. J. F. Cherry, A. Friedland and I. M. Shoemaker, Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube, 1411.1071.
  67. M. R. Lovell et al., ETHOS -an effective theory of structure formation: Predictions for the high-redshift Universe -abundance of galaxies and reionization, Mon. Not. Roy. Astron. Soc. 477 (2018) 2526 [1711.10497].
  68. R. Murgia, A. Merle, M. Viel, M. Totzauer and A. Schneider, "Non-cold" dark matter at small scales: a general approach, JCAP 1711 (2017) 046 [1704.07838].
  69. C. Boehm, P. Fayet and R. Schaeffer, Constraining dark matter candidates from structure formation, Phys. Lett. B518 (2001) 8 [astro-ph/0012504].
  70. C. Boehm, A. Riazuelo, S. H. Hansen and R. Schaeffer, Interacting dark matter disguised as warm dark matter, Phys. Rev. D66 (2002) 083505 [astro-ph/0112522].
  71. C. Boehm and R. Schaeffer, Constraints on dark matter interactions from structure formation: Damping lengths, Astron. Astrophys. 438 (2005) 419 [astro-ph/0410591].
  72. M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D71 (2005) 063534 [astro-ph/0501562].
  73. U. Seljak, A. Makarov, P. McDonald and H. Trac, Can sterile neutrinos be the dark matter?, Phys. Rev. Lett. 97 (2006) 191303 [astro-ph/0602430].
  74. M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese and A. Riotto, Can sterile neutrinos be ruled out as warm dark matter candidates?, Phys. Rev. Lett. 97 (2006) 071301 [astro-ph/0605706].
  75. G. Mangano, A. Melchiorri, P. Serra, A. Cooray and M. Kamionkowski, Cosmological bounds on dark matter-neutrino interactions, Phys. Rev. D74 (2006) 043517 [astro-ph/0606190].
  76. M. Viel et al., How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest, Phys. Rev. Lett. 100 (2008) 041304 [0709.0131].
  77. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 0905 (2009) 012 [0812.0010].
  78. P. Serra, F. Zalamea, A. Cooray, G. Mangano and A. Melchiorri, Constraints on neutrino - dark matter interactions from cosmic microwave background and large scale structure data, Phys. Rev. D81 (2010) 043507 [0911.4411].
  79. S. D. McDermott, H.-B. Yu and K. M. Zurek, Turning off the Lights: How Dark is Dark Matter?, Phys. Rev. D83 (2011) 063509 [1011.2907].
  80. M. Viel, G. D. Becker, J. S. Bolton and M. G. Haehnelt, Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-forest data, Phys. Rev. D88 (2013) 043502 [1306.2314].
  81. R. J. Wilkinson, J. Lesgourgues and C. Boehm, Using the CMB angular power spectrum to study Dark Matter-photon interactions, JCAP 1404 (2014) 026 [1309.7588].
  82. A. D. Dolgov, S. L. Dubovsky, G. I. Rubtsov and I. I. Tkachev, Constraints on millicharged particles from Planck data, Phys. Rev. D88 (2013) 117701 [1310.2376].
  83. R. J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 1405 (2014) 011 [1401.7597].
  84. A. Schneider, Structure formation with suppressed small-scale perturbations, Mon. Not. Roy. Astron. Soc. 451 (2015) 3117 [1412.2133].
  85. M. Escudero, O. Mena, A. C. Vincent, R. J. Wilkinson and C. Boehm, Exploring dark matter microphysics with galaxy surveys, JCAP 1509 (2015) 034 [1505.06735].
  86. Y. Ali-Haïmoud, J. Chluba and M. Kamionkowski, Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions, Phys. Rev. Lett. 115 (2015) 071304 [1506.04745].
  87. J. Baur, N. Palanque-Delabrouille, C. Yèche, C. Magneville and M. Viel, Lyman-alpha Forests cool Warm Dark Matter, JCAP 1608 (2016) 012 [1512.01981].
  88. R. Diamanti, S. Ando, S. Gariazzo, O. Mena and C. Weniger, Cold dark matter plus not-so-clumpy dark relics, JCAP 1706 (2017) 008 [1701.03128].
  89. S. Gariazzo, M. Escudero, R. Diamanti and O. Mena, Cosmological searches for a noncold dark matter component, Phys. Rev. D96 (2017) 043501 [1704.02991].
  90. J. A. D. Diacoumis and Y. Y. Y. Wong, Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis, JCAP 1709 (2017) 011 [1707.07050].
  91. E. Di Valentino, C. Boehm, E. Hivon and F. R. Bouchet, Reducing the H 0 and σ 8 tensions with Dark Matter-neutrino interactions, Phys. Rev. D97 (2018) 043513 [1710.02559].
  92. A. O.-D. Campo, C. Boehm, S. Palomares-Ruiz and S. Pascoli, Dark matter-neutrino interactions through the lens of their cosmological implications, Phys. Rev. D 97 075939 (2018) [1711.05283].
  93. J. Stadler and C. Boehm, CMB constraints on γ-CDM interactions revisited, 1802.06589.
  94. C. Dvorkin, K. Blum and M. Kamionkowski, Constraining Dark Matter-Baryon Scattering with Linear Cosmology, Phys. Rev. D89 (2014) 023519 [1311.2937].
  95. N. Vinyoles and H. Vogel, Minicharged Particles from the Sun: A Cutting-Edge Bound, JCAP 1603 (2016) 002 [1511.01122].
  96. DES Collaboration collaboration, K. Bechtol et al., Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data, Astrophys. J. 807 (2015) 50 [1503.02584].
  97. DES Collaboration collaboration, A. Drlica-Wagner et al., Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey, Astrophys. J. 813 (2015) 109 [1508.03622].
  98. SDSS Collaboration collaboration, C. P. Ahn et al., The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Astrophys. J. Suppl. 203 (2012) 21 [1207.7137].
  99. S. E. Koposov et al., A quantitative explanation of the observed population of Milky Way satellite galaxies, Astrophys. J. 696 (2009) 2179 [0901.2116].
  100. M. Sitwell, A. Mesinger, Y.-Z. Ma and K. Sigurdson, The Imprint of Warm Dark Matter on the Cosmological 21-cm Signal, Mon. Not. Roy. Astron. Soc. 438 (2014) 2664 [1310.0029].
  101. P. Dayal, A. Mesinger and F. Pacucci, Early galaxy formation in warm dark matter cosmologies, Astrophys. J. 806 (2015) 67 [1408.1102].
  102. S. Bose, C. S. Frenk, J. Hou, C. G. Lacey and M. R. Lovell, Reionization in sterile neutrino cosmologies, Mon. Not. Roy. Astron. Soc. 463 (2016) 3848 [1605.03179].
  103. L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and P. Villanueva-Domingo, Warm dark matter and the ionization history of the Universe, Phys. Rev. D96 (2017) 103539 [1703.02302].
  104. R. Barkana, Z. Haiman and J. P. Ostriker, Constraints on warm dark matter from cosmological reionization, Astrophys. J. 558 (2001) 482 [astro-ph/0102304].
  105. N. Yoshida, A. Sokasian, L. Hernquist and V. Springel, Early structure formation and reionization in a warm dark matter cosmology, Astrophys. J. 591 (2003) L1 [astro-ph/0303622].
  106. R. S. Somerville, J. S. Bullock and M. Livio, The epoch of reionization in models with reduced small scale power, Astrophys. J. 593 (2003) 616 [astro-ph/0303481].
  107. B. Yue and X. Chen, Reionization in the Warm Dark Matter Model, Astrophys. J. 747 (2012) 127 [1201.3686].
  108. F. Pacucci, A. Mesinger and Z. Haiman, Focusing on Warm Dark Matter with Lensed High-redshift Galaxies, Mon. Not. Roy. Astron. Soc. 435 (2013) L53 [1306.0009].
  109. A. Mesinger, A. Ewall-Wice and J. Hewitt, Reionization and beyond: detecting the peaks of the cosmological 21cm signal, Mon. Not. Roy. Astron. Soc. 439 (2014) 3262 [1310.0465].
  110. C. Schultz, J. Oñorbe, K. N. Abazajian and J. S. Bullock, The High-z Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter, Mon. Not. Roy. Astron. Soc. 442 (2014) 1597 [1401.3769].
  111. A. Lapi and L. Danese, Cold or Warm? Constraining Dark Matter with Primeval Galaxies and Cosmic Reionization after Planck, JCAP 1509 (2015) 003 [1508.02147].
  112. S. Bose et al., Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations, Mon. Not. Roy. Astron. Soc. 464 (2017) 4520 [1604.07409].
  113. P. S. Corasaniti, S. Agarwal, D. J. E. Marsh and S. Das, Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts, Phys. Rev. D95 (2017) 083512 [1611.05892].
  114. N. Menci, A. Grazian, M. Castellano and N. G. Sanchez, A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of z=6 Galaxies in the Hubble Frontier Fields, Astrophys. J. 825 (2016) L1 [1606.02530].
  115. P. Villanueva-Domingo, N. Y. Gnedin and O. Mena, Warm Dark Matter and Cosmic Reionization, Astrophys. J. 852 (2018) 139 [1708.08277].
  116. S. Das, R. Mondal, V. Rentala and S. Suresh, On dark matter -dark radiation interaction and cosmic reionization, 1712.03976.
  117. Á. Moliné, M. A. Sánchez-Conde, S. Palomares-Ruiz and F. Prada, Characterization of subhalo structural properties and implications for dark matter annihilation signals, Mon. Not. Roy. Astron. Soc. 466 (2017) 4974 [1603.04057].
  118. W. H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187 (1974) 425.
  119. J. R. Bond, S. Cole, G. Efstathiou and N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys. J. 379 (1991) 440.
  120. R. K. Sheth and G. Tormen, Large scale bias and the peak background split, Mon. Not. Roy. Astron. Soc. 308 (1999) 119 [astro-ph/9901122].
  121. R. K. Sheth, H. J. Mo and G. Tormen, Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, Mon. Not. Roy. Astron. Soc. 323 (2001) 1 [astro-ph/9907024].
  122. R. K. Sheth and G. Tormen, An Excursion set model of hierarchical clustering : Ellipsoidal collapse and the moving barrier, Mon. Not. Roy. Astron. Soc. 329 (2002) 61 [astro-ph/0105113].
  123. Á. Moliné, J. A. Schewtschenko, S. Palomares-Ruiz, C. Boehm and C. M. Baugh, Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios, JCAP 1608 (2016) 069 [1602.07282].
  124. J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, 1104.2932.
  125. J. A. Schewtschenko, Cosmological Simulations with Dark Matter from beyond the Standard Model, Ph.D. thesis, Durham U., 2016.
  126. S. Bose et al., The COpernicus COmplexio: Statistical Properties of Warm Dark Matter Haloes, Mon. Not. Roy. Astron. Soc. 455 (2016) 318 [1507.01998].
  127. P. Dayal, T. R. Choudhury, V. Bromm and F. Pacucci, Reionization and Galaxy Formation in Warm Dark Matter Cosmologies, Astrophys. J. 836 (2017) 16 [1501.02823].
  128. A. Rudakovskiy and D. Iakubovskyi, Influence of 7 keV sterile neutrino dark matter on the process of reionization, JCAP 1606 (2016) 017 [1604.01341].
  129. A. Mesinger, S. Furlanetto and R. Cen, 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal, Mon. Not. Roy. Astron. Soc. 411 (2011) 955 [1003.3878].
  130. A. Mesinger, A. Ferrara and D. S. Spiegel, Signatures of X-rays in the early Universe, Mon. Not. Roy. Astron. Soc. 431 (2013) 621 [1210.7319].
  131. S. Mineo, M. Gilfanov and R. Sunyaev, X-ray emission from star-forming galaxies -I. High-mass X-ray binaries, Mon. Not. Roy. Astron. Soc. 419 (2012) 2095 [1105.4610].
  132. A. Liu et al., Eliminating the optical depth nuisance from the CMB with 21 cm cosmology, Phys. Rev. D93 (2016) 043013 [1509.08463].
  133. R. Barkana and A. Loeb, In the beginning: The First sources of light and the reionization of the Universe, Phys. Rept. 349 (2001) 125 [astro-ph/0010468].
  134. A. E. Evrard, Formation and evolution of X-ray clusters -A hydrodynamic simulation of the intracluster medium, Astrophys. J. 363 (1990) 349.
  135. A. Blanchard, D. Vall-Gabaud and G. A. Mamon, The origin of the galaxy luminosity function and the thermal evolution of the intergalactic medium, Astron. Astrophys. 264 (1992) 365.
  136. M. Tegmark et al., How small were the first cosmological objects?, Astrophys. J. 474 (1997) 1 [astro-ph/9603007].
  137. Z. Haiman, T. Abel and M. J. Rees, The radiative feedback of the first cosmological objects, Astrophys. J. 534 (2000) 11 [astro-ph/9903336].
  138. B. Ciardi, A. Ferrara, F. Governato and A. Jenkins, Inhomogeneous reionization regulated by radiative and stellar feedbacks, Mon. Not. Roy. Astron. Soc. 314 (2000) 611 [astro-ph/9907189].
  139. B. Greig and A. Mesinger, 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal, Mon. Not. Roy. Astron. Soc. 449 (2015) 4246 [1501.06576].
  140. Planck Collaboration collaboration, N. Aghanim et al., Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, Astron. Astrophys. 596 (2016) A107 [1605.02985].
  141. A. Mesinger and S. Furlanetto, Efficient Simulations of Early Structure Formation and Reionization, Astrophys. J. 669 (2007) 663 [0704.0946].
  142. A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177].
  143. X.-H. Fan et al., Constraining the evolution of the ionizing background and the epoch of reionization with z 6 quasars. 2. a sample of 19 quasars, Astron. J. 132 (2006) 117 [astro-ph/0512082].
  144. I. McGreer, A. Mesinger and V. D'Odorico, Model-independent evidence in favour of an end to reionization by z ≈ 6, Mon. Not. Roy. Astron. Soc. 447 (2015) 499 [1411.5375].
  145. M. R. Santos, Probing reionization with Lyman-alpha emission lines, Mon. Not. Roy. Astron. Soc. 349 (2004) 1137 [astro-ph/0308196].
  146. S. Malhotra and J. E. Rhoads, Luminosity functions of Lyman-alpha emitters at z = 6.5, and z = 5.7: Evidence against reionization at z = 6, Astrophys. J. 617 (2004) L5 [astro-ph/0407408].
  147. M. McQuinn, L. Hernquist, M. Zaldarriaga and S. Dutta, Studying Reionization with Ly-alpha Emitters, Mon. Not. Roy. Astron. Soc. 381 (2007) 75 [0704.2239].
  148. A. Mesinger and S. Furlanetto, Lyman-alpha Emitters During the Early Stages of Reionization, Mon. Not. Roy. Astron. Soc. 386 (2008) 1990 [0708.0006].
  149. D. P. Stark, R. S. Ellis, K. Chiu, M. Ouchi and A. Bunker, Keck Spectroscopy of Faint 3¡z¡7 Lyman Break Galaxies: -I. New constraints on cosmic reionisation from the luminosity and redshift-dependent fraction of Lyman-alpha emission, Mon. Not. Roy. Astron. Soc. 408 (2010) 1628 [1003.5244].
  150. D. P. Stark, R. S. Ellis and M. Ouchi, Keck Spectroscopy of Faint 3¡z¡7 Lyman Break Galaxies:-II. A High Fraction of Line Emitters at Redshift Six, Astrophys. J. 728 (2011) L2 [1009.5471].
  151. A. Fontana et al., The lack of intense Lyman alpha in ultradeep spectra of z=7 candidates in GOODS-S: imprint of reionization?, Astrophys. J. 725 (2010) L205 [1010.2754].
  152. M. Dijkstra, A. Mesinger and S. Wyithe, The Detectability of Lyman Alpha Emission from Galaxies during the Epoch of Reionization, Mon. Not. Roy. Astron. Soc. 414 (2011) 2139 [1101.5160].
  153. L. Pentericci et al., Spectroscopic confirmation of z 7 LBGs: probing the earliest galaxies and the epoch of reionization, Astrophys. J. 743 (2011) 132 [1107.1376].
  154. Y. Ono et al., Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 -7.213: Demographics of Lyman-Alpha Emission in z 7 Galaxies, Astrophys. J. 744 (2012) 83 [1107.3159].
  155. J. Caruana et al., No Evidence for Lyman-alpha Emission in Spectroscopy of z ¿ 7 Candidate Galaxies, Mon. Not. Roy. Astron. Soc. 427 (2012) 3055 [1208.5987].
  156. T. Treu, K. B. Schmidt, M. Trenti, L. D. Bradley and M. Stiavelli, The Changing Ly Optical Depth in the Range 6 ¡ z ¡ 9 from the MOSFIRE Spectroscopy of Y-dropouts, Astrophys. J. 775 (2013) L29 [1308.5985].
  157. J. Caruana et al., Spectroscopy of z ∼ 7 candidate galaxies: Using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universe, Mon. Not. Roy. Astron. Soc. 443 (2014) 2831 [1311.0057].
  158. V. Tilvi et al., Rapid Decline of Lyα Emission Toward the Reionization Era, Astrophys. J. 794 (2014) 5 [1405.4869].
  159. M. A. Schenker, R. S. Ellis, N. P. Konidaris and D. P. Stark, Line Emitting Galaxies Beyond a Redshift of 7: An Improved Method for Estimating the Evolving Neutrality of the Intergalactic Medium, Astrophys. J. 795 (2014) 20 [1404.4632].
  160. R. J. Bouwens et al., Reionization after Planck: The Derived Growth of the Cosmic Ionizing Emissivity now matches the Growth of the Galaxy UV Luminosity Density, Astrophys. J. 811 (2015) 140 [1503.08228].
  161. O. Newton, M. Cautun, A. Jenkins, C. S. Frenk and J. Helly, The total satellite population of the Milky Way, Mon. Not. Roy. Astron. Soc. (2018) [1708.04247].
  162. B. F. Griffen et al., The Caterpillar Project: a Large Suite of Milky way Sized Halos, Astrophys. J. 818 (2016) 10 [1509.01255].
  163. S. Garrison-Kimmel, M. Boylan-Kolchin, J. Bullock and K. Lee, ELVIS: Exploring the Local Volume in Simulations, Mon. Not. Roy. Astron. Soc. 438 (2014) 2578 [1310.6746].
  164. P. S. Behroozi, R. H. Wechsler and C. Conroy, The Average Star Formation Histories of Galaxies in Dark Matter Halos from z =0-8, Astrophys. J. 770 (2013) 57 [1207.6105].
  165. A. M. Brooks and A. Zolotov, Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites, Astrophys. J. 786 (2014) 87 [1207.2468].
  166. B. P. Moster, T. Naab and S. D. M. White, Galactic star formation and accretion histories from matching galaxies to dark matter haloes, Mon. Not. Roy. Astron. Soc. 428 (2013) 3121 [1205.5807].
  167. S. Koposov et al., The Luminosity Function of the Milky Way Satellites, Astrophys. J. 686 (2008) 279 [0706.2687].
  168. E. J. Tollerud, J. S. Bullock, L. E. Strigari and B. Willman, Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function, Astrophys. J. 688 (2008) 277 [0806.4381].
  169. J. R. Hargis, B. Willman and A. H. G. Peter, Too Many, Too Few, or Just Right? The Predicted Number and Distribution of Milky Way Dwarf Galaxies, Astrophys. J. 795 (2014) L13 [1407.4470].
  170. P. Jethwa, D. Erkal and V. Belokurov, The upper bound on the lowest mass halo, Mon. Not. Roy. Astron. Soc. 473 (2018) 2060 [1612.07834].
  171. G. A. Dooley et al., An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations, Mon. Not. Roy. Astron. Soc. 471 (2017) 4894 [1610.00708].
  172. W. Wang et al., Estimating the dark matter halo mass of our Milky Way using dynamical tracers, Mon. Not. Roy. Astron. Soc. 453 (2015) 377 [1502.03477].
  173. J. S. Bullock, A. V. Kravtsov and D. H. Weinberg, Reionization and the abundance of galactic satellites, Astrophys. J. 539 (2000) 517 [astro-ph/0002214].
  174. R. S. Somerville, Can photoionization squelching resolve the sub-structure crisis?, Astrophys. J. 572 (2002) L23 [astro-ph/0107507].
  175. A. J. Benson, C. S. Frenk, C. G. Lacey, C. M. Baugh and S. Cole, The effects of photoionization on galaxy formation. 2. Satellites in the local group, Mon. Not. Roy. Astron. Soc. 333 (2002) 177 [astro-ph/0108218].
  176. J. Wolf et al., Accurate Masses for Dispersion-supported Galaxies, Mon. Not. Roy. Astron. Soc. 406 (2010) 1220 [0908.2995].
  177. B. Willman, In Pursuit of the Least Luminous Galaxies, Adv. Astron. 2010 (2010) 285454 [0907.4758].
  178. Y. Mao, M. Tegmark, M. McQuinn, M. Zaldarriaga and O. Zahn, How accurately can 21 cm tomography constrain cosmology?, Phys. Rev. D78 (2008) 023529 [0802.1710].
  179. J. R. Pritchard and A. Loeb, 21-cm cosmology, Rept. Prog. Phys. 75 (2012) 086901 [1109.6012].
  180. M. P. van Haarlem et al., LOFAR: The LOw-Frequency ARray, Astron. Astrophys. 556 (2013) A2 [1305.3550].
  181. MITEoR Collaboration collaboration, H. Zheng et al., MITEoR: a scalable interferometer for precision 21 cm cosmology, Mon. Not. Roy. Astron. Soc. 445 (2014) 1084 [1405.5527].
  182. J. D. Bowman and A. E. E. Rogers, A lower limit of dz ¿ 0.06 for the duration of the reionization epoch, Nature 468 (2010) 796 [1209.1117].
  183. S. J. Tingay et al., The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies, Publ. Astron. Soc. Austral. 30 (2013) 7 [1206.6945].
  184. A. R. Parsons et al., The Precision Array for Probing the Epoch of Reionization: 8 Station Results, Astron. J. 139 (2010) 1468 [0904.2334].
  185. Z. S. Ali et al., PAPER-64 Constraints on Reionization: The 21cm Power Spectrum at z =8.4, Astrophys. J. 809 (2015) 61 [1502.06016].
  186. D. R. DeBoer et al., Hydrogen Epoch of Reionization Array (HERA), Publ. Astron. Soc. Pac. 129 (2017) 045001 [1606.07473].
  187. J. C. Pober et al., What Next-Generation 21 cm Power Spectrum Measurements Can Teach Us About the Epoch of Reionization, Astrophys. J. 782 (2014) 66 [1310.7031].
  188. SKA Collaboration collaboration, P. Dewdney et al., "SKA baseline description." https://www.skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_ SKA1_System_Baseline_v2_DescriptionRev01-part-1-signed.pdf, 2015.
  189. J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67.
  190. C. Evoli, A. Mesinger and A. Ferrara, Unveiling the nature of dark matter with high redshift 21 cm line experiments, JCAP 1411 (2014) 024 [1408.1109].
  191. L. Lopez-Honorez, O. Mena, A. Moliné, S. Palomares-Ruiz and A. C. Vincent, The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes, JCAP 1608 (2016) 004 [1603.06795].
  192. G. Bernardi et al., Bayesian constraints on the global 21-cm signal from the Cosmic Dawn, Mon. Not. Roy. Astron. Soc. 461 (2016) 2847 [1606.06006].
  193. P. Madau, A. Meiksin and M. J. Rees, 21-CM tomography of the intergalactic medium at high redshift, Astrophys. J. 475 (1997) 429 [astro-ph/9608010].
  194. S. Furlanetto, S. P. Oh and F. Briggs, Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe, Phys. Rept. 433 (2006) 181 [astro-ph/0608032].
  195. S. R. Furlanetto, The 21-cm Line as a Probe of Reionization, in Understanding the Epoch of Cosmic Reionization: Challenges and Progress (A. Mesinger, ed.), vol. 423, pp. 247-280. Springer International Publishing, 2016. 1511.01131.
  196. C. M. Hirata, Wouthuysen-Field coupling strength and application to high-redshift 21 cm radiation, Mon. Not. Roy. Astron. Soc. 367 (2006) 259 [astro-ph/0507102].
  197. S. A. Wouthuysen, On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line., Astrophys. J. 57 (1952) 31.
  198. G. B. Field, Excitation of the Hydrogen 21-CM Line, Proceedings of the IRE 46 (1958) 240.
  199. J. C. Pober et al., The Baryon Acoustic Oscillation Broadband and Broad-beam Array: Design Overview and Sensitivity Forecasts, Astron. J. 145 (2013) 65 [1210.2413].
  200. Gaia Collaboration, A. Helmi, F. van Leeuwen, P. J. McMillan, D. Massari, T. Antoja et al., Gaia Data Release 2: Kinematics of globular clusters and dwarf galaxies around the Milky Way, ArXiv e-prints (2018) [1804.09381].
  201. L. Posti and A. Helmi, Mass and shape of the Milky Way's dark matter halo with globular clusters from Gaia and Hubble, ArXiv e-prints (2018) [1805.01408].
  202. T. K. Fritz, G. Battaglia, M. S. Pawlowski, N. Kallivayalil, R. van der Marel, T. S. Sohn et al., Gaia DR2 Proper Motions of Dwarf Galaxies within 420 kpc: Orbits, Milky Way Mass, Tidal Influences, Planar Alignments, and Group Infall, ArXiv e-prints (2018) [1805.00908].
  203. L. L. Watkins, R. P. van der Marel, S. T. Sohn and N. W. Evans, Evidence for an Intermediate-Mass Milky Way from Gaia DR2 Halo Globular Cluster Motions, ArXiv e-prints (2018) [1804.11348].