Academia.eduAcademia.edu

Outline

Deciphering Dark Matter with Cosmological Observations

2016

https://doi.org/10.1093/MNRAS/STW1078,ARXIV:1512.06774

Abstract

Determining the nature of dark matter (DM) remains one of the key challenges in both particle physics and cosmology. Although we know the approximate distribution of DM in the Universe, we lack an understanding of its fundamental properties such as its mass and potential couplings to Standard Model particles. In the weakly-interacting massive particle (WIMP) paradigm, DM was in thermal equilibrium in the early Universe and we should expect scattering to have occurred between DM and Standard Model particles. In this thesis, we first consider the impact of primordial scattering between DM and radiation (photons or neutrinos). Such interactions give rise to a modification in the amplitude and position of the cosmic microwave background (CMB) acoustic peaks and a series of damped oscillations in the matter power spectrum. We obtain constraints from the Planck satellite and other CMB experiments, and then derive limits from large-scale structure (LSS) surveys. By providing forecasts for future experiments, we illustrate the power of LSS surveys in probing deviations from the standard cold DM (CDM) model. Then, using high-resolution N-body simulations, we show that the suppressed matter power spectra in such interacting DM scenarios allows one to alleviate the small-scale challenges faced by CDM; in particular, the "missing satellite" and "too big to fail" problems. Finally, we show that the excess of 511 keV gamma-rays from the Galactic centre, which has been observed by numerous experiments for four decades, cannot be explained via annihilations of light WIMPs, suggesting an astrophysical or more exotic DM source of the signal.

References (340)

  1. R. J. Wilkinson, J. Lesgourgues, and C. Boehm, "Using the CMB angular power spectrum to study Dark Matter-photon interactions," JCAP 1404, 026 (2014), arXiv:1309.7588.
  2. R. J. Wilkinson, C. Boehm, and J. Lesgourgues, "Constraining Dark Matter- Neutrino Interactions using the CMB and Large-Scale Structure," JCAP 1405, 011 (2014), arXiv:1401.7597.
  3. M. Escudero, O. Mena, A. C. Vincent, R. J. Wilkinson, and C. Boehm, "Exploring dark matter microphysics with galaxy surveys," JCAP 1509, 034 (2015), arXiv:1505.06735.
  4. C. Boehm, J. Schewtschenko, R. Wilkinson, C. Baugh, and S. Pascoli, "Using the Milky Way satellites to study interactions between cold dark matter and radiation," MNRAS 445, L31-L35 (2014), arXiv:1404.7012.
  5. J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh, C. Boehm, and S. Pascoli, "Dark matter-radiation interactions: the impact on dark matter haloes," MNRAS 449, 3587-3596 (2015), arXiv:1412.4905.
  6. J. A. Schewtschenko, C. M. Baugh, R. J. Wilkinson, C. Boehm, S. Pascoli, and T. Sawala, "Dark matter-radiation interactions: the structure of Milky Way satellite galaxies," (2015), 10.1093/mnras/stw1078, arXiv:1512.06774.
  7. R. J. Wilkinson, A. C. Vincent, C. Boehm, and C. McCabe, "Ruling out the light WIMP explanation of the galactic 511 keV line," (2016), arXiv:1602.01114.
  8. C. Bennett et al. (WMAP), "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results," Astrophys.J.Suppl. 208, 20 (2013), arXiv:1212.5225.
  9. G. Hinshaw et al. (WMAP), "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results," Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226.
  10. P. Ade et al. (Planck Collaboration), "Planck 2013 results. XVI. Cosmological parameters," Astron.Astrophys. 571, A16 (2014), arXiv:1303.5076.
  11. P. Ade et al. (Planck Collaboration), "Planck 2015 results. XIII. Cosmological parameters," (2015), arXiv:1502.01589.
  12. F. Zwicky, "Die Rotverschiebung von extragalaktischen Nebeln," Helv. Phys. Acta 6, 110-127 (1933).
  13. A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S. S. Murray, and L. Van Speybroeck, "Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation," Astrophys. J. 640, 691- 709 (2006), arXiv:astro-ph/0507092.
  14. K. Freese, "Review of Observational Evidence for Dark Matter in the Universe and in upcoming searches for Dark Stars," EAS Publ. Ser. 36, 113-126 (2009), arXiv:0812.4005.
  15. R. B. Metcalf and P. Madau, "Compound gravitational lensing as a probe of dark matter substructure within galaxy halos," Astrophys. J. 563, 9 (2001), arXiv:astro-ph/0108224.
  16. R. B. Metcalf and H. Zhao, "Flux ratios as a probe of dark substructures in quadruple-image gravitational lenses," Astrophys. J. 567, L5 (2002), arXiv:astro-ph/0111427.
  17. A. Einstein, "The Foundation of the General Theory of Relativity," Annalen Phys. 49, 769-822 (1916), [Annalen Phys.14,517(2005)].
  18. D. Clowe, A. Gonzalez, and M. Markevitch, "Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter," Astrophys. J. 604, 596-603 (2004), arXiv:astro- ph/0312273.
  19. M. Bradac, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and D. Applegate, "Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222," Astrophys. J. 687, 959 (2008), arXiv:0806.2320.
  20. A. Mahdavi, H. y. Hoekstra, A. y. Babul, D. y. Balam, and P. Capak, "A Dark Core in Abell 520," Astrophys. J. 668, 806-814 (2007), arXiv:0706.3048.
  21. M. J. Jee, H. Hoekstra, A. Mahdavi, and A. Babul, "Hubble Space Telescope/Advanced Camera for Surveys Confirmation of the Dark Substructure in A520," Astrophys. J. 783, 78 (2014), arXiv:1401.3356.
  22. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, "A direct empirical proof of the existence of dark matter," Astrophys. J. 648, L109-L113 (2006), arXiv:astro-ph/0608407.
  23. M. Milgrom, "A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis," ApJ 270, 365-370 (1983).
  24. M. Milgrom, "A modification of the Newtonian dynamics -Implications for galaxies," ApJ 270, 371-389 (1983).
  25. M. Milgrom, "A Modification of the Newtonian Dynamics -Implications for Galaxy Systems," ApJ 270, 384 (1983).
  26. S. Dodelson, "The Real Problem with MOND," Int. J. Mod. Phys. D20, 2749- 2753 (2011), arXiv:1112.1320.
  27. E. Hubble, "A relation between distance and radial velocity among extra- galactic nebulae," Proc. Nat. Acad. Sci. 15, 168-173 (1929).
  28. S. Jha, Exploding stars, near and far, Ph.D. thesis, Harvard U. (2002).
  29. D. J. Fixsen, "The Temperature of the Cosmic Microwave Background," Astrophys. J. 707, 916-920 (2009), arXiv:0911.1955.
  30. A. Friedman, "On the Curvature of space," Z. Phys. 10, 377-386 (1922), [Gen. Rel. Grav.31,1991(1999)].
  31. A. G. Riess et al. (Supernova Search Team), "Observational evidence from supernovae for an accelerating universe and a cosmological constant," Astron. J. 116, 1009-1038 (1998), arXiv:astro-ph/9805201.
  32. S. Perlmutter et al. (Supernova Cosmology Project), "Measurements of Omega and Lambda from 42 high redshift supernovae," Astrophys. J. 517, 565-586 (1999), arXiv:astro-ph/9812133.
  33. A. D. Dolgov, "Big bang nucleosynthesis," Nucl. Phys. Proc. Suppl. 110, 137- 143 (2002), arXiv:hep-ph/0201107.
  34. R. A. Alpher, H. Bethe, and G. Gamow, "The origin of chemical elements," Phys. Rev. 73, 803-804 (1948).
  35. J. Beringer et al. (Particle Data Group), "Review of Particle Physics (RPP)," Phys. Rev. D86, 010001 (2012).
  36. R. Ichimasa, R. Nakamura, M. Hashimoto, and K. Arai, "Big- Bang Nucleosynthesis in comparison with observed helium and deuterium abundances: possibility of a nonstandard model," Phys. Rev. D90, 023527 (2014), arXiv:1404.4831.
  37. B. D. Fields, "The primordial lithium problem," Ann. Rev. Nucl. Part. Sci. 61, 47-68 (2011), arXiv:1203.3551.
  38. P. Peebles, "Recombination of the Primeval Plasma," Astrophys.J. 153, 1 (1968).
  39. A. A. Penzias and R. W. Wilson, "A Measurement of excess antenna temperature at 4080-Mc/s," Astrophys. J. 142, 419-421 (1965).
  40. J. C. Mather et al., "Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument," Astrophys. J. 420, 439-444 (1994).
  41. N. Straumann, "From primordial quantum fluctuations to the anisotropies of the cosmic microwave background radiation," Annalen Phys. 15, 701-847 (2006), arXiv:hep-ph/0505249.
  42. R. Adam et al. (Planck Collaboration), "Planck 2015 results. I. Overview of products and scientific results," (2015), arXiv:1502.01582.
  43. G. F. Smoot et al., "Structure in the COBE differential microwave radiometer first year maps," Astrophys. J. 396, L1-L5 (1992).
  44. J. L. Sievers et al. (Atacama Cosmology Telescope), "The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data," JCAP 1310, 060 (2013), arXiv:1301.0824.
  45. R. Keisler, C. Reichardt, K. Aird, B. Benson, L. Bleem, et al., "A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope," Astrophys.J. 743, 28 (2011), arXiv:1105.3182.
  46. U. Seljak and M. Zaldarriaga, "A Line of sight integration approach to cosmic microwave background anisotropies," Astrophys.J. 469, 437-444 (1996), arXiv:astro-ph/9603033.
  47. A. Lewis, A. Challinor, and A. Lasenby, "Efficient computation of CMB anisotropies in closed FRW models," Astrophys.J. 538, 473-476 (2000), arXiv:astro-ph/9911177.
  48. J. Lesgourgues, "The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview," (2011), arXiv:1104.2932.
  49. R. K. Sachs and A. M. Wolfe, "Perturbations of a cosmological model and angular variations of the microwave background," Astrophys. J. 147, 73-90 (1967), [Gen. Rel. Grav.39,1929(2007)].
  50. J. Silk, "Cosmic black body radiation and galaxy formation," Astrophys. J. 151, 459-471 (1968).
  51. W. H. McMaster, "Polarization and the Stokes Parameters," American Journal of Physics 22, 351-362 (1954).
  52. M. Zaldarriaga, "CMB polarization experiments," Astrophys. J. 503, 1 (1998), arXiv:astro-ph/9709271.
  53. M. Kamionkowski and E. D. Kovetz, "The Quest for B Modes from Inflationary Gravitational Waves," (2015), arXiv:1510.06042.
  54. P. Ade et al. (Planck), "Planck 2015 results. XX. Constraints on inflation," (2015), arXiv:1502.02114.
  55. M. Zaldarriaga and U. Seljak, "Gravitational lensing effect on cosmic microwave background polarization," Phys. Rev. D58, 023003 (1998), arXiv:astro-ph/9803150.
  56. J. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, and W. L. Holzapfel, "Detection of polarization in the cosmic microwave background using DASI," Nature 420, 772-787 (2002), arXiv:astro-ph/0209478.
  57. D. Hanson et al. (SPTpol), "Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope," Phys. Rev. Lett. 111, 141301 (2013), arXiv:1307.5830.
  58. P. Ade et al. (BICEP2, Planck), "Joint Analysis of BICEP2/Keck Array and Planck Data," Phys. Rev. Lett. 114, 101301 (2015), arXiv:1502.00612.
  59. J. F. Navarro, C. S. Frenk, and S. D. M. White, "The Structure of cold dark matter halos," Astrophys. J. 462, 563-575 (1996), arXiv:astro-ph/9508025.
  60. V. Springel et al., "Simulating the joint evolution of quasars, galaxies and their large-scale distribution," Nature 435, 629-636 (2005), arXiv:astro- ph/0504097.
  61. V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, "The Aquarius Project: the subhalos of galactic halos," MNRAS 391, 1685-1711 (2008), arXiv:0809.0898.
  62. J. Diemand, M. Kuhlen, and P. Madau, "Dark matter substructure and gamma-ray annihilation in the Milky Way halo," Astrophys. J. 657, 262-270 (2007), arXiv:astro-ph/0611370.
  63. J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, et al., "Clumps and streams in the local dark matter distribution," Nature 454, 735-738 (2008), arXiv:0805.1244.
  64. E. R. Harrison, "Fluctuations at the threshold of classical cosmology," Phys. Rev. D1, 2726-2730 (1970).
  65. Ya. B. Zeldovich, "A Hypothesis, unifying the structure and the entropy of the universe," Mon. Not. Roy. Astron. Soc. 160, 1P-3P (1972).
  66. S. Tsujikawa, "Introductory review of cosmic inflation," (2003) arXiv:hep- ph/0304257.
  67. P. Meszaros, "The behaviour of point masses in an expanding cosmological substratum," Astron. Astrophys. 37, 225-228 (1974).
  68. M. Tegmark et al. (SDSS), "The 3-D power spectrum of galaxies from the SDSS," Astrophys. J. 606, 702-740 (2004), arXiv:astro-ph/0310725.
  69. J. R. Bond and A. S. Szalay, "The Collisionless Damping of Density Fluctuations in an Expanding Universe," Astrophys. J. 274, 443-468 (1983).
  70. J. Lesgourgues and S. Pastor, "Massive neutrinos and cosmology," Phys.Rept. 429, 307-379 (2006), arXiv:astro-ph/0603494.
  71. P. Fayet and S. Ferrara, "Supersymmetry," Phys. Rept. 32, 249-334 (1977).
  72. G. Jungman, M. Kamionkowski, and K. Griest, "Supersymmetric dark matter," Phys. Rept. 267, 195-373 (1996), arXiv:hep-ph/9506380.
  73. S. P. Martin, "A Supersymmetry primer," (1997), arXiv:hep-ph/9709356.
  74. K. Griest and M. Kamionkowski, "Supersymmetric dark matter," Phys. Rept. 333, 167-182 (2000).
  75. R. Peccei and H. R. Quinn, "CP Conservation in the Presence of Instantons," Phys.Rev.Lett. 38, 1440-1443 (1977).
  76. R. D. Peccei and H. R. Quinn, "Constraints Imposed by CP Conservation in the Presence of Instantons," Phys. Rev. D16, 1791-1797 (1977).
  77. J. Preskill, M. B. Wise, and F. Wilczek, "Cosmology of the Invisible Axion," Phys.Lett. B120, 127-132 (1983).
  78. C. Frenk and S. D. White, "Dark matter and cosmic structure," Annalen Phys. 524, 507-534 (2012), arXiv:1210.0544.
  79. B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn, et al., "Dark matter substructure within galactic halos," Astrophys.J. 524, L19-L22 (1999), arXiv:astro-ph/9907411.
  80. A. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada, "Where are the missing Galactic satellites?" Astrophys.J. 522, 82-92 (1999), arXiv:astro- ph/9901240.
  81. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, "Too big to fail? The puzzling darkness of massive Milky Way subhaloes," MNRAS 415, L40 (2011), arXiv:1103.0007.
  82. S. Dodelson and L. M. Widrow, "Sterile-neutrinos as dark matter," Phys.Rev.Lett. 72, 17-20 (1994), arXiv:hep-ph/9303287.
  83. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, "The Role of sterile neutrinos in cosmology and astrophysics," Ann.Rev.Nucl.Part.Sci. 59, 191- 214 (2009), arXiv:0901.0011.
  84. M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, "Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest," Phys.Rev. D71, 063534 (2005), arXiv:astro-ph/0501562.
  85. A. Dolgov and S. Hansen, "Massive sterile neutrinos as warm dark matter," Astropart.Phys. 16, 339-344 (2002), arXiv:hep-ph/0009083.
  86. R. N. Mohapatra et al., "Theory of neutrinos: A White paper," Rept. Prog. Phys. 70, 1757-1867 (2007), arXiv:hep-ph/0510213.
  87. M. Drewes, "The Phenomenology of Right Handed Neutrinos," Int. J. Mod. Phys. E22, 1330019 (2013), arXiv:1303.6912.
  88. E. W. Kolb and M. S. Turner, "The Early Universe," Front. Phys. 69, 1-547 (1990).
  89. B. Audren, J. Lesgourgues, G. Mangano, P. D. Serpico, and T. Tram, "Strongest model-independent bound on the lifetime of Dark Matter," JCAP 1412, 028 (2014), arXiv:1407.2418.
  90. G. Steigman, B. Dasgupta, and J. F. Beacom, "Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation," Phys. Rev. D86, 023506 (2012), arXiv:1204.3622.
  91. D. Hooper, "Particle Dark Matter," (2010) pp. 709-764, arXiv:0901.4090.
  92. B. W. Lee and S. Weinberg, "Cosmological Lower Bound on Heavy Neutrino Masses," Phys. Rev. Lett. 39, 165-168 (1977).
  93. P. Hut, "Limits on Masses and Number of Neutral Weakly Interacting Particles," Phys. Lett. B69, 85 (1977).
  94. C. Boehm and P. Fayet, "Scalar dark matter candidates," Nucl.Phys. B683, 219-263 (2004), arXiv:hep-ph/0305261.
  95. L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, "Freeze-In Production of FIMP Dark Matter," JHEP 03, 080 (2010), arXiv:0911.1120.
  96. M. W. Goodman and E. Witten, "Detectability of Certain Dark Matter Candidates," Phys. Rev. D31, 3059 (1985).
  97. T. Marrodán Undagoitia and L. Rauch, "Dark matter direct-detection experiments," J. Phys. G43, 013001 (2016), arXiv:1509.08767.
  98. R. J. Gaitskell, "Direct detection of dark matter," Ann. Rev. Nucl. Part. Sci. 54, 315-359 (2004).
  99. A. K. Drukier, K. Freese, and D. N. Spergel, "Detecting Cold Dark Matter Candidates," Phys. Rev. D33, 3495-3508 (1986).
  100. P. Belli, R. Cerulli, N. Fornengo, and S. Scopel, "Effect of the galactic halo modeling on the DAMA / NaI annual modulation result: an Extended analysis of the data for WIMPs with a purely spin independent coupling," Phys. Rev. D66, 043503 (2002), arXiv:hep-ph/0203242.
  101. A. M. Green, "Effect of halo modeling on WIMP exclusion limits," Phys. Rev. D66, 083003 (2002), arXiv:astro-ph/0207366.
  102. D. Stiff and L. M. Widrow, "Fine structure of dark matter halos and its effect on terrestrial detection experiments," Phys. Rev. Lett. 90, 211301 (2003), arXiv:astro-ph/0301301.
  103. A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, "The Effective Field Theory of Dark Matter Direct Detection," JCAP 1302, 004 (2013), arXiv:1203.3542.
  104. D. Akerib et al. (LUX Collaboration), "First results from the LUX dark matter experiment at the Sanford Underground Research Facility," Phys.Rev.Lett. 112, 091303 (2014), arXiv:1310.8214.
  105. R. Agnese et al. (SuperCDMS), "Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS," Phys. Rev. Lett. 112, 241302 (2014), arXiv:1402.7137.
  106. D. S. Akerib et al. (LUX), "Improved WIMP scattering limits from the LUX experiment," Phys. Rev. Lett. 116, 161301 (2016), arXiv:1512.03506.
  107. W. B. Atwood et al. (Fermi-LAT), "The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission," Astrophys. J. 697, 1071-1102 (2009), arXiv:0902.1089.
  108. F. Stoehr, S. D. M. White, V. Springel, G. Tormen, and N. Yoshida, "Dark matter annihilation in the halo of the Milky Way," Mon. Not. Roy. Astron. Soc. 345, 1313 (2003), arXiv:astro-ph/0307026.
  109. A. A. Abdo et al. (Fermi-LAT), "Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models," Astrophys. J. 712, 147-158 (2010), arXiv:1001.4531.
  110. A. W. Graham, D. Merritt, B. Moore, J. Diemand, and B. Terzic, "Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models," Astron. J. 132, 2685-2700 (2006), arXiv:astro-ph/0509417.
  111. A. A. Dutton and A. V. Macciò, "Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles," Mon. Not. Roy. Astron. Soc. 441, 3359-3374 (2014), arXiv:1402.7073.
  112. L. Pieri, J. Lavalle, G. Bertone, and E. Branchini, "Implications of High- Resolution Simulations on Indirect Dark Matter Searches," Phys. Rev. D83, 023518 (2011), arXiv:0908.0195.
  113. J. I. Read, "The Local Dark Matter Density," J. Phys. G41, 063101 (2014), arXiv:1404.1938.
  114. A. Birkedal, K. T. Matchev, M. Perelstein, and A. Spray, "Robust gamma ray signature of WIMP dark matter," (2005), arXiv:hep-ph/0507194.
  115. M. Leventhal, C. J. MacCallum, and P. D. Stang, "Detection of 511 keV positron annihilation radiation from the galactic center direction," ApJ 225, L11-L14 (1978).
  116. F. Albernhe, J. F. Le Borgne, G. Vedrenne, D. Boclet, P. Durouchoux, and J. M. da Costa, "Detection of the positron annihilation gamma ray line from the Galactic Center region," Astron.Astrophys. 94, 214-218 (1981).
  117. M. Leventhal, C. J. MacCallum, A. F. Huters, and P. D. Stang, "Current status of the galactic center positron-annihilation source," ApJ 302, 459-461 (1986).
  118. G. H. Share, R. L. Kinzer, J. D. Kurfess, D. C. Messina, W. R. Purcell, E. L. Chupp, D. J. Forrest, and C. Reppin, "SMM detection of diffuse Galactic 511 keV annihilation radiation," ApJ 326, 717-732 (1988).
  119. W. R. Purcell, D. A. Grabelsky, M. P. Ulmer, W. N. Johnson, R. L. Kinzer, J. D. Kurfess, M. S. Strickman, and G. V. Jung, "OSSE observations of Galactic 511 keV positron annihilation radiation -Initial phase 1 results," ApJ 413, L85-L88 (1993).
  120. W. R. Purcell, L.-X. Cheng, D. D. Dixon, R. L. Kinzer, J. D. Kurfess, M. Leventhal, M. A. Saunders, J. G. Skibo, D. M. Smith, and J. Tueller, "OSSE Mapping of Galactic 511 keV Positron Annihilation Line Emission," ApJ 491, 725-748 (1997).
  121. M. Ackermann et al. (LAT Collaboration), "Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum," Phys.Rev. D86, 022002 (2012), arXiv:1205.2739.
  122. F. Aharonian et al. (HESS), "Observations of the Crab Nebula with H.E.S.S," Astron. Astrophys. 457, 899-915 (2006), arXiv:astro-ph/0607333.
  123. J. Aleksic et al. (MAGIC), "Performance of the MAGIC stereo system obtained with Crab Nebula data," Astropart. Phys. 35, 435-448 (2012), arXiv:1108.1477.
  124. J. Holder et al., "Status of the VERITAS Observatory," AIP Conf. Proc. 1085, 657-660 (2009), arXiv:0810.0474.
  125. M. L. Proper, J. P. Harding, and B. Dingus (HAWC), "First Limits on the Dark Matter Cross Section with the HAWC Observatory," (2015) arXiv:1508.04470.
  126. J. Ahrens et al. (IceCube), "Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos," Astropart. Phys. 20, 507-532 (2004), arXiv:astro-ph/0305196.
  127. M. Ageron et al. (ANTARES), "ANTARES: the first undersea neutrino telescope," Nucl. Instrum. Meth. A656, 11-38 (2011), arXiv:1104.1607.
  128. Y. Fukuda et al. (Super-Kamiokande), "The Super-Kamiokande detector," Nucl. Instrum. Meth. A501, 418-462 (2003).
  129. P. Blasi, "The Origin of Galactic Cosmic Rays," Astron. Astrophys. Rev. 21, 70 (2013), arXiv:1311.7346.
  130. O. Adriani et al. (PAMELA Collaboration), "An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV," Nature 458, 607-609 (2009), arXiv:0810.4995.
  131. A. Kounine, "The Alpha Magnetic Spectrometer on the International Space Station," Int. J. Mod. Phys. E21, 1230005 (2012).
  132. H. Fuke et al., "Current status and future plans for the general antiparticle spectrometer (GAPS)," Adv. Space Res. 41, 2056-2060 (2008).
  133. V. Khachatryan et al. (CMS), "Search for dark matter particles in proton- proton collisions at sqrt(s) = 8 TeV using the razor variables," (2016), arXiv:1603.08914.
  134. I. M. Shoemaker and L. Vecchi, "Unitarity and Monojet Bounds on Models for DAMA, CoGeNT, and CRESST-II," Phys. Rev. D86, 015023 (2012), arXiv:1112.5457.
  135. O. Buchmueller, M. J. Dolan, and C. McCabe, "Beyond Effective Field Theory for Dark Matter Searches at the LHC," JHEP 01, 025 (2014), arXiv:1308.6799.
  136. S. Chatrchyan et al. (CMS), "Search for dark matter and large extra dimensions in monojet events in pp collisions at √ s = 7 TeV," JHEP 09, 094 (2012), arXiv:1206.5663.
  137. G. Aad et al. (ATLAS), "Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector," JHEP 04, 075 (2013), arXiv:1210.4491.
  138. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, "Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions," Phys. Rept. 215, 203-333 (1992).
  139. C.-P. Ma and E. Bertschinger, "Cosmological perturbation theory in the synchronous and conformal Newtonian gauges," Astrophys.J. 455, 7-25 (1995), arXiv:astro-ph/9506072.
  140. E. Lifshitz, "On the Gravitational stability of the expanding universe," J. Phys.(USSR) 10, 116 (1946).
  141. T. H.-C. Lu, K. Ananda, C. Clarkson, and R. Maartens, "The cosmological background of vector modes," JCAP 0902, 023 (2009), arXiv:0812.1349.
  142. L. Pogosian, I. Wasserman, and M. Wyman, "On vector mode contribution to CMB temperature and polarization from local strings," (2006), arXiv:astro- ph/0604141.
  143. L. Husdal, "Viscosity in a Lepton-Photon Universe," (2016), arXiv:1606.02481.
  144. J. R. Bond and G. Efstathiou, "Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter," Astrophys. J. 285, L45- L48 (1984).
  145. P. J. E. Peebles and J. T. Yu, "Primeval adiabatic perturbation in an expanding universe," Astrophys. J. 162, 815-836 (1970).
  146. D. Blas, J. Lesgourgues, and T. Tram, "The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes," JCAP 1107, 034 (2011), arXiv:1104.2933.
  147. U. Seljak, "A Two fluid approximation for calculating the cosmic microwave background anisotropies," Astrophys. J. 435, L87-L90 (1994), arXiv:astro- ph/9406050.
  148. K. Petraki and R. R. Volkas, "Review of asymmetric dark matter," Int. J. Mod. Phys. A28, 1330028 (2013), arXiv:1305.4939.
  149. J. Barreto et al. (DAMIC Collaboration), "Direct Search for Low Mass Dark Matter Particles with CCDs," Phys.Lett. B711, 264-269 (2012), arXiv:1105.5191.
  150. G. M. Fuller, A. Kusenko, I. Mocioiu, and S. Pascoli, "Pulsar kicks from a dark-matter sterile neutrino," Phys.Rev. D68, 103002 (2003), arXiv:astro- ph/0307267.
  151. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, "Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background," MNRAS 370, 213-218 (2006), arXiv:astro-ph/0512509.
  152. C. R. Watson, J. F. Beacom, H. Yuksel, and T. P. Walker, "Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter," Phys.Rev. D74, 033009 (2006), arXiv:astro-ph/0605424.
  153. K. N. Abazajian, M. Markevitch, S. M. Koushiappas, and R. C. Hickox, "Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds," Phys.Rev. D75, 063511 (2007), arXiv:astro-ph/0611144.
  154. C. Boehm, T. Ensslin, and J. Silk, "Can Annihilating dark matter be lighter than a few GeVs?" J.Phys. G30, 279-286 (2004), arXiv:astro-ph/0208458.
  155. C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, "MeV dark matter: Has it been detected?" Phys.Rev.Lett. 92, 101301 (2004), arXiv:astro-ph/0309686.
  156. C. Boehm and Y. Ascasibar, "More evidence in favour of light dark matter particles?" Phys.Rev. D70, 115013 (2004), arXiv:hep-ph/0408213.
  157. C. Boehm and J. Silk, "A New test of the light dark matter hypothesis," Phys.Lett. B661, 287-289 (2008), arXiv:0708.2768.
  158. D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, "Cavity Control of a Single- Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment," Phys. Rev. A83, 052122 (2011), arXiv:1009.4831.
  159. R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez, and F. Biraben, "New determination of the fine structure constant and test of the quantum electrodynamics," Phys.Rev.Lett. 106, 080801 (2011), arXiv:1012.3627.
  160. C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz, and S. Pascoli, "Is it possible to explain neutrino masses with scalar dark matter?" Phys.Rev. D77, 043516 (2008), arXiv:hep-ph/0612228.
  161. L. Bergstrom and J. Kaplan, "Gamma-ray lines from TeV dark matter," Astropart.Phys. 2, 261-268 (1994), arXiv:hep-ph/9403239.
  162. C. Boehm, P. Fayet, and R. Schaeffer, "Constraining dark matter candidates from structure formation," Phys.Lett. B518, 8-14 (2001), arXiv:astro- ph/0012504.
  163. C. Boehm, A. Riazuelo, S. H. Hansen, and R. Schaeffer, "Interacting dark matter disguised as warm dark matter," Phys.Rev. D66, 083505 (2002), arXiv:astro-ph/0112522.
  164. C. Boehm, H. Mathis, J. Devriendt, and J. Silk, "Non-linear evolution of suppressed dark matter primordial power spectra," MNRAS 360, 282-287 (2005), arXiv:astro-ph/0309652.
  165. C. Boehm and R. Schaeffer, "Constraints on dark matter interactions from structure formation: Damping lengths," Astron.Astrophys. 438, 419-442 (2005), arXiv:astro-ph/0410591.
  166. S. D. McDermott, H.-B. Yu, and K. M. Zurek, "Turning off the Lights: How Dark is Dark Matter?" Phys.Rev. D83, 063509 (2011), arXiv:1011.2907.
  167. K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, "Dark-matter electric and magnetic dipole moments," Phys.Rev. D70, 083501 (2004), arXiv:astro-ph/0406355.
  168. S. Gardner, "Shedding Light on Dark Matter: A Faraday Rotation Experiment to Limit a Dark Magnetic Moment," Phys.Rev. D79, 055007 (2009), arXiv:0811.0967.
  169. S. Chang, N. Weiner, and I. Yavin, "Magnetic Inelastic Dark Matter," Phys.Rev. D82, 125011 (2010), arXiv:1007.4200.
  170. L. Bergstrom and P. Ullio, "Full one loop calculation of neutralino annihilation into two photons," Nucl.Phys. B504, 27-44 (1997), arXiv:hep-ph/9706232.
  171. J. Hisano, S. Matsumoto, and M. M. Nojiri, "Unitarity and higher order corrections in neutralino dark matter annihilation into two photons," Phys.Rev. D67, 075014 (2003), arXiv:hep-ph/0212022.
  172. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, et al., "Relic neutrino decoupling including flavor oscillations," Nucl.Phys. B729, 221-234 (2005), arXiv:hep-ph/0506164.
  173. B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, "Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code," JCAP 1302, 001 (2013), arXiv:1210.7183.
  174. P. A. R. Ade et al. (Planck Collaboration), "Planck 2013 results. I. Overview of products and scientific results," (2013), arXiv:1303.5062.
  175. Z. Hou et al., "Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500 deg 2 SPT-SZ Survey," Astrophys. J. 782, 74 (2014), arXiv:1212.6267.
  176. A. Arbey, M. Battaglia, and F. Mahmoudi, "Supersymmetry with Light Dark Matter confronting the recent CDMS and LHC Results," Phys. Rev. D88, 095001 (2013), arXiv:1308.2153.
  177. J. Jaeckel and A. Ringwald, "The Low-Energy Frontier of Particle Physics," Ann.Rev.Nucl.Part.Sci. 60, 405-437 (2010), arXiv:1002.0329.
  178. A. Prinz, R. Baggs, J. Ballam, S. Ecklund, C. Fertig, et al., "Search for millicharged particles at SLAC," Phys.Rev.Lett. 81, 1175-1178 (1998), arXiv:hep-ex/9804008.
  179. T. M. Crawford et al., "A Measurement of the Secondary-CMB and Millimeter- wave-foreground Bispectrum using 800 deg 2 of South Pole Telescope Data," Astrophys. J. 784, 143 (2014), arXiv:1303.3535.
  180. E. Calabrese et al., "Cosmological parameters from pre-planck cosmic microwave background measurements," Phys. Rev. D87, 103012 (2013), arXiv:1302.1841.
  181. Z. Kermish et al., "The POLARBEAR Experiment," Proc. SPIE Int. Soc. Opt. Eng. 8452, 1C (2012), arXiv:1210.7768.
  182. B. P. Crill et al., "SPIDER: A Balloon-borne Large-scale CMB Polarimeter," Proc. SPIE Int. Soc. Opt. Eng. 7010, 2P (2008), arXiv:0807.1548.
  183. D. Boyanovsky and J. Wu, "Small scale aspects of warm dark matter : power spectra and acoustic oscillations," Phys.Rev. D83, 043524 (2011), arXiv:1008.0992.
  184. M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt, "Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data," Phys.Rev. D88, 043502 (2013), arXiv:1306.2314.
  185. R. Laureijs et al. (EUCLID Collaboration), "Euclid Definition Study Report," (2011), arXiv:1110.3193.
  186. M. Levi et al. (DESI), "The DESI Experiment, a whitepaper for Snowmass 2013," (2013), arXiv:1308.0847.
  187. C. Boehm, P. Fayet, and J. Silk, "Light and heavy dark matter particles," Phys.Rev. D69, 101302 (2004), arXiv:hep-ph/0311143.
  188. G. Mangano, A. Melchiorri, P. Serra, A. Cooray, and M. Kamionkowski, "Cosmological bounds on dark matter-neutrino interactions," Phys.Rev. D74, 043517 (2006), arXiv:astro-ph/0606190.
  189. P. Serra, F. Zalamea, A. Cooray, G. Mangano, and A. Melchiorri, "Constraints on neutrino -dark matter interactions from cosmic microwave background and large scale structure data," Phys.Rev. D81, 043507 (2010), arXiv:0911.4411.
  190. A. Dolgov, S. Dubovsky, G. Rubtsov, and I. Tkachev, "Constraints on millicharged particles from Planck data," Phys.Rev. D88, 117701 (2013), arXiv:1310.2376.
  191. X.-l. Chen, S. Hannestad, and R. J. Scherrer, "Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons," Phys.Rev. D65, 123515 (2002), arXiv:astro-ph/0202496.
  192. C. Dvorkin, K. Blum, and M. Kamionkowski, "Constraining Dark Matter- Baryon Scattering with Linear Cosmology," Phys.Rev. D89, 023519 (2014), arXiv:1311.2937.
  193. A. Aviles and J. L. Cervantes-Cota, "Dark degeneracy and interacting cosmic components," Phys. Rev. D84, 083515 (2011), [Erratum: Phys. Rev.D84,089905(2011)], arXiv:1108.2457.
  194. Y. Farzan, S. Pascoli, and M. A. Schmidt, "AMEND: A model explaining neutrino masses and dark matter testable at the LHC and MEG," JHEP 1010, 111 (2010), arXiv:1005.5323.
  195. M. Lindner, D. Schmidt, and T. Schwetz, "Dark Matter and Neutrino Masses from Global U (1) B-L Symmetry Breaking," Phys.Lett. B705, 324-330 (2011), arXiv:1105.4626.
  196. S. S. Law and K. L. McDonald, "A Class of Inert N-tuplet Models with Radiative Neutrino Mass and Dark Matter," JHEP 1309, 092 (2013), arXiv:1305.6467.
  197. L. Ackerman, M. R. Buckley, S. M. Carroll, and M. Kamionkowski, "Dark Matter and Dark Radiation," Phys.Rev. D79, 023519 (2009), arXiv:0810.5126.
  198. F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli, and K. Sigurdson, "Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology," Phys. Rev. D89, 063517 (2014), arXiv:1310.3278.
  199. S. Andreas, M. D. Goodsell, and A. Ringwald, "Hidden Photons in connection to Dark Matter," AIP Conf. Proc. 1563, 114-117 (2013), arXiv:1306.1168.
  200. U. Franca, R. A. Lineros, J. Palacio, and S. Pastor, "Probing interactions within the dark matter sector via extra radiation contributions," Phys.Rev. D87, 123521 (2013), arXiv:1303.1776.
  201. F. Bouchet et al. (COrE Collaboration), "COrE (Cosmic Origins Explorer) A White Paper," (2011), arXiv:1102.2181.
  202. A. Kogut, D. Fixsen, D. Chuss, J. Dotson, E. Dwek, et al., "The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations," JCAP 1107, 025 (2011), arXiv:1105.2044.
  203. L. Anderson et al. (BOSS), "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples," MNRAS 441, 24-62 (2014), arXiv:1312.4877.
  204. L. Anderson et al., "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D A and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample," MNRAS 439, 83-101 (2014), arXiv:1303.4666.
  205. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, et al., "The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant," MNRAS 416, 3017-3032 (2011), arXiv:1106.3366.
  206. C. Blake et al., "The WiggleZ Dark Energy Survey: mapping the distance- redshift relation with baryon acoustic oscillations," MNRAS 418, 1707-1724 (2011), arXiv:1108.2635.
  207. N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, et al., "A 2 per cent distance to z=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey," MNRAS 427, 2132-2145 (2012), arXiv:1202.0090.
  208. W. J. Percival et al. (SDSS), "Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample," MNRAS 401, 2148-2168 (2010), arXiv:0907.1660.
  209. D. Parkinson, S. Riemer-Sorensen, C. Blake, G. B. Poole, T. M. Davis, et al., "The WiggleZ Dark Energy Survey: Final data release and cosmological results," Phys.Rev. D86, 103518 (2012), arXiv:1210.2130.
  210. K. S. Dawson et al. (BOSS), "The Baryon Oscillation Spectroscopic Survey of SDSS-III," Astron.J. 145, 10 (2013), arXiv:1208.0022.
  211. J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf, and Y. Y. Wong, "Cosmological parameters from large scale structure -geometric versus shape information," JCAP 1007, 022 (2010), arXiv:1003.3999.
  212. E. Giusarma, R. De Putter, and O. Mena, "Testing standard and nonstandard neutrino physics with cosmological data," Phys.Rev. D87, 043515 (2013), arXiv:1211.2154.
  213. E. Giusarma, R. de Putter, S. Ho, and O. Mena, "Constraints on neutrino masses from Planck and Galaxy Clustering data," Phys.Rev. D88, 063515 (2013), arXiv:1306.5544.
  214. S. Weinberg, Cosmology, Cosmology (OUP Oxford, 2008).
  215. L. Voruz, J. Lesgourgues, and T. Tram, "The effective gravitational decoupling between dark matter and the CMB," JCAP 1403, 004 (2014), arXiv:1312.5301.
  216. S. Vogt, S. Allen, B. Bigelow, L. Bresee, B. Brown, et al., "HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope," Proc.SPIE Int.Soc.Opt.Eng. 2198, 362 (1994).
  217. G. M. Bernstein, A. E. Athey, R. Bernstein, S. M. Gunnels, D. O. Richstone, and S. A. Shectman, "Volume-phase holographic spectrograph for the Magellan telescopes," Proc. SPIE Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 4485, 453-459 (2002).
  218. O. Lahav and A. R. Liddle, "The Cosmological Parameters 2014," (2014), arXiv:1401.1389.
  219. P. A. R. Ade et al. (Planck), "Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts," Astron. Astrophys. 571, A20 (2014), arXiv:1303.5080.
  220. C. Heymans et al., "CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments," Mon. Not. Roy. Astron. Soc. 432, 2433 (2013), arXiv:1303.1808.
  221. A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, et al., "A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3," Astrophys.J. 730, 119 (2011), arXiv:1103.2976.
  222. W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns, A. Monson, et al., "Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant," Astrophys.J. 758, 24 (2012), arXiv:1208.3281.
  223. M. Niemack, P. Ade, J. Aguirre, F. Barrientos, J. Beall, et al., "ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope," Proc.SPIE Int.Soc.Opt.Eng. 7741, 77411S (2010), arXiv:1006.5049.
  224. F. Atrio-Barandela and S. Davidson, "Interacting hot dark matter," Phys. Rev. D55, 5886-5894 (1997), arXiv:astro-ph/9702236.
  225. S. Das and N. Weiner, "Late Forming Dark Matter in Theories of Neutrino Dark Energy," Phys. Rev. D84, 123511 (2011), arXiv:astro-ph/0611353.
  226. F.-Y. Cyr-Racine and K. Sigurdson, "Cosmology of atomic dark matter," Phys.Rev. D87, 103515 (2013), arXiv:1209.5752.
  227. R. Diamanti, E. Giusarma, O. Mena, M. Archidiacono, and A. Melchiorri, "Dark Radiation and interacting scenarios," Phys.Rev. D87, 063509 (2013), arXiv:1212.6007.
  228. M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo, and P. Serra, "Asymmetric Dark Matter and Dark Radiation," JCAP 1207, 022 (2012), arXiv:1203.5803.
  229. M. R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson, and M. Vogelsberger, "Scattering, Damping, and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers," Phys. Rev. D90, 043524 (2014), arXiv:1405.2075.
  230. R. Hlozek, D. Grin, D. J. Marsh, and P. G. Ferreira, "A search for ultralight axions using precision cosmological data," Phys. Rev. D91, 103512 (2015), arXiv:1410.2896.
  231. P. Bode, J. P. Ostriker, and N. Turok, "Halo formation in warm dark matter models," Astrophys.J. 556, 93-107 (2001), arXiv:astro-ph/0010389.
  232. C. Boehm, "Implications of a new light gauge boson for neutrino physics," Phys.Rev. D70, 055007 (2004), arXiv:hep-ph/0405240.
  233. C.-W. Chiang, G. Faisel, Y.-F. Lin, and J. Tandean, "Constraining Nonstandard Neutrino-Electron Interactions due to a New Light Spin-1
  234. Boson," JHEP 1310, 150 (2013), arXiv:1204.6296.
  235. A. Arhrib, C. Boehm, E. Ma, and T.-C. Yuan, "Radiative Model of Neutrino Mass with Neutrino Interacting MeV Dark Matter," JCAP 1604, 049 (2016), arXiv:1512.08796 [hep-ph].
  236. P. Binetruy, G. Girardi, and P. Salati, "Constraints on a System of Two Neutral Fermions From Cosmology," Nucl.Phys. B237, 285 (1984).
  237. K. Griest and D. Seckel, "Three exceptions in the calculation of relic abundances," Phys.Rev. D43, 3191-3203 (1991).
  238. P. D. Serpico and G. G. Raffelt, "MeV-mass dark matter and primordial nucleosynthesis," Phys. Rev. D70, 043526 (2004), arXiv:astro-ph/0403417.
  239. C. Boehm, M. J. Dolan, and C. McCabe, "A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck," JCAP 1308, 041 (2013), arXiv:1303.6270.
  240. C. Boehm, M. J. Dolan, and C. McCabe, "Increasing Neff with particles in thermal equilibrium with neutrinos," JCAP 1212, 027 (2012), arXiv:1207.0497.
  241. K. M. Nollett and G. Steigman, "BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs," Phys.Rev. D89, 083508 (2014), arXiv:1312.5725.
  242. G. Steigman, "Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation," Phys.Rev. D87, 103517 (2013), arXiv:1303.0049.
  243. Y. Farzan and S. Palomares-Ruiz, "Dips in the Diffuse Supernova Neutrino Background," JCAP 1406, 014 (2014), arXiv:1401.7019.
  244. D. E. Kaplan, M. A. Luty, and K. M. Zurek, "Asymmetric Dark Matter," Phys.Rev. D79, 115016 (2009), arXiv:0901.4117.
  245. B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, D. N. Spergel, et al., "Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies," MNRAS 404, 60-85 (2010), arXiv:0907.1659.
  246. S. Riemer-Sorensen, C. Blake, D. Parkinson, T. M. Davis, S. Brough, et al., "The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies," Phys.Rev. D85, 081101 (2012), arXiv:1112.4940.
  247. M. Tegmark et al. (SDSS), "Cosmological Constraints from the SDSS Luminous Red Galaxies," Phys.Rev. D74, 123507 (2006), arXiv:astro- ph/0608632.
  248. A. Lewis and S. Bridle, "Cosmological parameters from CMB and other data: A Monte Carlo approach," Phys.Rev. D66, 103511 (2002), arXiv:astro- ph/0205436.
  249. L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and Y. Y. Wong, "Probing cosmological parameters with the CMB: Forecasts from full Monte Carlo simulations," JCAP 0610, 013 (2006), arXiv:astro-ph/0606227.
  250. H.-J. Seo and D. J. Eisenstein, "Probing dark energy with baryonic acoustic oscillations from future large galaxy redshift surveys," Astrophys.J. 598, 720- 740 (2003), arXiv:astro-ph/0307460.
  251. M. Tegmark, A. Taylor, and A. Heavens, "Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?" Astrophys.J. 480, 22 (1997), arXiv:astro-ph/9603021.
  252. G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N. Spergel, "Cosmological parameter determination with microwave background maps," Phys.Rev. D54, 1332-1344 (1996), arXiv:astro-ph/9512139.
  253. R. A. Fisher, "The logic of inductive inference," Journal of the Royal Statistical Society 98, pp. 39-82 (1935).
  254. A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, et al., "DESI and other dark energy experiments in the era of neutrino mass measurements," JCAP 1405, 023 (2014), arXiv:1308.4164.
  255. L. R. Abramo and K. E. Leonard, "Why multi-tracer surveys beat cosmic variance," MNRAS 432, 318 (2013), arXiv:1302.5444.
  256. E. Bertschinger, "The Effects of Cold Dark Matter Decoupling and Pair Annihilation on Cosmological Perturbations," Phys.Rev. D74, 063509 (2006), arXiv:astro-ph/0607319.
  257. M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White, "The Evolution of Large Scale Structure in a Universe Dominated by Cold Dark Matter," Astrophys.J. 292, 371-394 (1985).
  258. J. Dubinski and R. Carlberg, "The Structure of cold dark matter halos," Astrophys.J. 378, 496 (1991).
  259. S. E. Koposov, V. Belokurov, G. Torrealba, and N. W. Evans, "Beasts of the Southern Wild: Discovery of nine Ultra Faint satellites in the vicinity of the Magellanic Clouds," Astrophys. J. 805, 130 (2015), arXiv:1503.02079.
  260. K. Bechtol et al. (DES), "Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data," Astrophys. J. 807, 50 (2015), arXiv:1503.02584.
  261. A. J. Benson, C. Lacey, C. Baugh, S. Cole, and C. Frenk, "The Effects of photoionization on galaxy formation. 1. Model and results at z = 0," MNRAS 333, 156 (2002), arXiv:astro-ph/0108217.
  262. R. S. Somerville, "Can Photoionization Squelching Resolve the Substructure Crisis?" ApJ 572, L23-L26 (2002), astro-ph/0107507.
  263. T. Sawala et al., "Local Group galaxies emerge from the dark," (2014), arXiv:1412.2748.
  264. T. Sawala et al., "Bent by baryons: the low mass galaxy-halo relation," Mon. Not. Roy. Astron. Soc. 448, 2941-2947 (2015), arXiv:1404.3724.
  265. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, "The Milky Way's bright satellites as an apparent failure of ΛCDM," MNRAS 422, 1203-1218 (2012), arXiv:1111.2048.
  266. J. Wang, C. S. Frenk, J. F. Navarro, L. Gao, and T. Sawala, "The missing massive satellites of the Milky Way," MNRAS 424, 2715-2721 (2012), arXiv:1203.4097.
  267. M. Cautun, C. S. Frenk, R. van de Weygaert, W. A. Hellwing, and B. J. T. Jones, "Milky Way mass constraints from the Galactic satellite gap," MNRAS 445, 2049 (2014), arXiv:1405.7697.
  268. T. Piffl and et al., "The RAVE survey: the Galactic escape speed and the mass of the Milky Way," Astron. & Astrop. 562, A91 (2014), arXiv:1309.4293.
  269. W. Wang, J. Han, A. P. Cooper, S. Cole, C. Frenk, and B. Lowing, "Estimating the dark matter halo mass of our Milky Way using dynamical tracers," MNRAS 453, 377-400 (2015), arXiv:1502.03477.
  270. R. Schaeffer and J. Silk, "Cold, warm, or hot dark matter -Biased galaxy formation and pancakes," Astrophys.J. 332, 1-16 (1988).
  271. X. Chu and B. Dasgupta, "Dark Radiation Alleviates Problems with Dark Matter Halos," Phys.Rev.Lett. 113, 161301 (2014), arXiv:1404.6127.
  272. D. N. Spergel and P. J. Steinhardt, "Observational evidence for selfinteracting cold dark matter," Phys. Rev. Lett. 84, 3760-3763 (2000), arXiv:astro- ph/9909386.
  273. M. Rocha, A. H. Peter, J. S. Bullock, M. Kaplinghat, S. Garrison-Kimmel, et al., "Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure," MNRAS 430, 81-104 (2013), arXiv:1208.3025.
  274. M. Vogelsberger, J. Zavala, C. Simpson, and A. Jenkins, "Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter," MNRAS 444, 3684 (2014), arXiv:1405.5216.
  275. M.-Y. Wang, A. H. G. Peter, L. E. Strigari, A. R. Zentner, B. Arant, et al., "Cosmological Simulations of Decaying Dark Matter: Implications for Small-scale Structure of Dark Matter Halos," MNRAS 445, 614 (2014), arXiv:1406.0527.
  276. S. Agarwal, P.-S. Corasaniti, S. Das, and Y. Rasera, "Small scale clustering of late forming dark matter," Phys. Rev. D. 92, 063502 (2015), arXiv:1412.1103.
  277. M. R. Lovell, C. S. Frenk, V. R. Eke, A. Jenkins, L. Gao, et al., "The properties of warm dark matter haloes," MNRAS 439, 300-317 (2014), arXiv:1308.1399.
  278. A. Schneider, D. Anderhalden, A. Maccio, and J. Diemand, "Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies," Mon. Not. Roy. Astron. Soc. 441, 6 (2014), arXiv:1309.5960.
  279. J. Diemand, B. Moore, and J. Stadel, "Earth-mass dark-matter haloes as the first structures in the early Universe," Nature 433, 389-391 (2005), astro- ph/0501589.
  280. R. E. Angulo and S. D. M. White, "The Birth and Growth of Neutralino Haloes," MNRAS 401, 1796 (2010), arXiv:0906.1730.
  281. F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger, and C. Pfrommer, "ETHOS -An Effective Theory of Structure Formation: From dark particle physics to the matter distribution of the Universe," (2015), arXiv:1512.05344.
  282. M. Vogelsberger, J. Zavala, F.-Y. Cyr-Racine, C. Pfrommer, T. Bringmann, and K. Sigurdson, "ETHOS -An Effective Theory of Structure Formation: Dark matter physics as a possible explanation of the small-scale CDM problems," (2015), arXiv:1512.05349.
  283. V. Springel, "The Cosmological simulation code GADGET-2," MNRAS 364, 1105-1134 (2005), arXiv:astro-ph/0505010.
  284. P. Colin, O. Valenzuela, and V. Avila-Reese, "On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities," Astrophys.J. 673, 203-214 (2008), arXiv:0709.4027.
  285. X. Xue et al. (SDSS Collaboration), "The Milky Way's Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from Kinematics of 2400 SDSS Blue Horizontal Branch Stars," Astrophys.J. 684, 1143-1158 (2008), arXiv:0801.1232.
  286. M. Boylan-Kolchin, J. S. Bullock, S. T. Sohn, G. Besla, and R. P. van der Marel, "The Space Motion of Leo I: The Mass of the Milky Way's Dark Matter Halo," Astrophys.J. 768, 140 (2013), arXiv:1210.6046.
  287. H. M. Courtois, D. Pomarede, R. B. Tully, and D. Courtois, "Cosmography of the Local Universe," Astron.J. 146, 69 (2013), arXiv:1306.0091.
  288. V. Springel, N. Yoshida, and S. D. White, "GADGET: A Code for collisionless and gasdynamical cosmological simulations," New Astron. 6, 79 (2001), arXiv:astro-ph/0003162.
  289. B. Willman, "In Pursuit of the Least Luminous Galaxies," Adv.Astron. 2010, 285454 (2010), arXiv:0907.4758.
  290. J. S. Bullock, "Notes on the Missing Satellites Problem," (2010), arXiv:1009.4505.
  291. A. Fattahi, J. F. Navarro, T. Sawala, C. S. Frenk, K. A. Oman, R. A. Crain, M. Furlong, M. Schaller, J. Schaye, T. Theuns, and A. Jenkins, "The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection," ArXiv e-prints (2015), arXiv:1507.03643.
  292. A. Jenkins, "Second-order Lagrangian perturbation theory initial conditions for resimulations," MNRAS 403, 1859-1872 (2010), arXiv:0910.0258.
  293. S. R. Knollmann and A. Knebe, "Ahf: Amiga's Halo Finder,"
  294. Astrophys.J.Suppl. 182, 608-624 (2009), arXiv:0904.3662.
  295. J. Wolf, G. D. Martinez, J. S. Bullock, M. Kaplinghat, M. Geha, R. R. Muñoz, J. D. Simon, and F. F. Avedo, "Accurate masses for dispersion-supported galaxies," MNRAS 406, 1220-1237 (2010), arXiv:0908.2995.
  296. C. Power, J. Navarro, A. Jenkins, C. Frenk, S. D. White, et al., "The Inner structure of Lambda CDM halos. 1. A Numerical convergence study," MNRAS 338, 14-34 (2003), arXiv:astro-ph/0201544.
  297. J. F. Navarro, C. S. Frenk, and S. D. White, "A Universal density profile from hierarchical clustering," Astrophys.J. 490, 493-508 (1997), arXiv:astro- ph/9611107.
  298. T. Sawala et al., "The APOSTLE simulations: solutions to the Local Group's cosmic puzzles," Mon. Not. Roy. Astron. Soc. 457, 1931 (2016), arXiv:1511.01098.
  299. A. H. G. Peter, "Dark Matter: A Brief Review," ArXiv e-prints (2012), arXiv:1201.3942.
  300. E. Churazov, R. Sunyaev, S. Sazonov, M. Revnivtsev, and D. Varshalovich, "Positron annihilation spectrum from the Galactic Center region observed by SPI/INTEGRAL," MNRAS 357, 1377-1386 (2005), arXiv:astro-ph/0411351.
  301. J. Knodlseder et al., "The all-sky distribution of 511-keV electron positron annihilation emission," Astron. Astrophys. 441, 513-532 (2005), arXiv:astro- ph/0506026.
  302. P. Jean, J. Knodlseder, W. Gillard, N. Guessoum, K. Ferriere, et al., "Spectral analysis of the galactic e+ e-annihilation emission," Astron.Astrophys. 445, 579-589 (2006), arXiv:astro-ph/0509298.
  303. G. Weidenspointner, C. Shrader, J. Knoedlseder, P. Jean, V. Lonjou, et al., "The sky distribution of positronium annihilation continuum emission measured with spi/integral," Astron.Astrophys. 450, 1012 (2006), arXiv:astro- ph/0601673.
  304. T. Siegert, R. Diehl, G. Khachatryan, M. G. H. Krause, F. Guglielmetti, J. Greiner, A. W. Strong, and X. Zhang, "Gamma-ray spectroscopy of Positron Annihilation in the Milky Way," Astron. Astrophys. 586, A84 (2016), arXiv:1512.00325.
  305. G. Weidenspointner, G. Skinner, P. Jean, J. Knodlseder, P. von Ballmoos, et al., "An asymmetric distribution of positrons in the Galactic disk revealed by gamma-rays," Nature 451, 159-162 (2008).
  306. N. Prantzos et al., "The 511 keV emission from positron annihilation in the Galaxy," Rev. Mod. Phys. 83, 1001-1056 (2011), arXiv:1009.4620.
  307. R. Diehl, H. Halloin, K. Kretschmer, A. Strong, W. Wang, et al., "26al in the inner galaxy," Astron.Astrophys. 449, 1025-1031 (2006), arXiv:astro- ph/0512334.
  308. A. C. Vincent, P. Martin, and J. M. Cline, "Interacting dark matter contribution to the Galactic 511 keV gamma ray emission: constraining the morphology with INTEGRAL/SPI observations," JCAP 1204, 022 (2012), arXiv:1201.0997.
  309. Y. Ascasibar, P. Jean, C. Boehm, and J. Knoedlseder, "Constraints on dark matter and the shape of the Milky Way dark halo from the 511-keV line," MNRAS 368, 1695-1705 (2006), arXiv:astro-ph/0507142.
  310. J. M. Cline and A. R. Frey, "Abelian dark matter models for 511 keV gamma rays and direct detection," Annalen Phys. 524, 579-590 (2012), arXiv:1204.1965.
  311. M. H. Chan, "Electron-positron pair production near the Galactic Centre and the 511 keV emission line," Mon. Not. Roy. Astron. Soc. 456, L113-L116 (2016), arXiv:1511.07933.
  312. J. F. Beacom and H. Yuksel, "Stringent constraint on galactic positron production," Phys.Rev.Lett. 97, 071102 (2006), arXiv:astro-ph/0512411.
  313. P. Sizun, M. Casse, S. Schanne, and B. Cordier, "Constraints on the injection energy of positrons in the Galactic centre region," (2007), [ESA Spec. Publ.622,61(2007)], arXiv:astro-ph/0702061.
  314. L. Zhang, X. Chen, M. Kamionkowski, Z.-g. Si, and Z. Zheng, "Constraints on radiative dark-matter decay from the cosmic microwave background," Phys. Rev. D76, 061301 (2007), arXiv:0704.2444.
  315. S. Galli, F. Iocco, G. Bertone, and A. Melchiorri, "CMB constraints on Dark Matter models with large annihilation cross-section," Phys. Rev. D80, 023505 (2009), arXiv:0905.0003.
  316. T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner, "CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch," Phys. Rev. D80, 043526 (2009), arXiv:0906.1197.
  317. T. Kanzaki, M. Kawasaki, and K. Nakayama, "Effects of Dark Matter Annihilation on the Cosmic Microwave Background," Prog. Theor. Phys. 123, 853-865 (2010), arXiv:0907.3985.
  318. J. Hisano, M. Kawasaki, K. Kohri, T. Moroi, K. Nakayama, and T. Sekiguchi, "Cosmological constraints on dark matter models with velocity-dependent annihilation cross section," Phys. Rev. D83, 123511 (2011), arXiv:1102.4658.
  319. G. Hutsi, J. Chluba, A. Hektor, and M. Raidal, "WMAP7 and future CMB constraints on annihilating dark matter: implications on GeV-scale WIMPs," Astron. Astrophys. 535, A26 (2011), arXiv:1103.2766.
  320. S. Galli, F. Iocco, G. Bertone, and A. Melchiorri, "Updated CMB constraints on Dark Matter annihilation cross-sections," Phys. Rev. D84, 027302 (2011), arXiv:1106.1528.
  321. D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer, "Searching for Dark Matter in the CMB: A Compact Parameterization of Energy Injection from New Physics," Phys. Rev. D85, 043522 (2012), arXiv:1109.6322.
  322. T. R. Slatyer, "Energy injection and absorption in the cosmic dark ages," Phys. Rev. D 87, 123513 (2013), arXiv:1211.0283.
  323. S. Galli, T. R. Slatyer, M. Valdes, and F. Iocco, "Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background," Phys. Rev. D88, 063502 (2013), arXiv:1306.0563.
  324. L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, and A. C. Vincent, "Constraints on dark matter annihilation from CMB observations before Planck," JCAP 1307, 046 (2013), arXiv:1303.5094.
  325. M. S. Madhavacheril, N. Sehgal, and T. R. Slatyer, "Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data," Phys. Rev. D89, 103508 (2014), arXiv:1310.3815.
  326. R. Diamanti, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, and A. C. Vincent, "Constraining Dark Matter Late-Time Energy Injection: Decays and P-Wave Annihilations," JCAP 1402, 017 (2014), arXiv:1308.2578.
  327. T. R. Slatyer, "Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results," Phys. Rev. D93, 023527 (2016), arXiv:1506.03811.
  328. M. Kawasaki, K. Nakayama, and T. Sekiguchi, "CMB Constraint on Dark Matter Annihilation after Planck 2015," Phys. Lett. B756, 212-215 (2016), arXiv:1512.08015.
  329. E. W. Kolb, M. S. Turner, and T. P. Walker, "The Effect of Interacting Particles on Primordial Nucleosynthesis," Phys. Rev. D34, 2197 (1986).
  330. K. M. Nollett and G. Steigman, "BBN And The CMB Constrain Neutrino Coupled Light WIMPs," Phys. Rev. D91, 083505 (2015), arXiv:1411.6005.
  331. G. Steigman and K. M. Nollett, "Light WIMPs, Equivalent Neutrinos, BBN, and the CMB," Mem. Soc. Ast. It. 85, 175 (2014), arXiv:1401.5488.
  332. T. R. Slatyer, "Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections," Phys. Rev. D93, 023521 (2016), arXiv:1506.03812.
  333. C. M. Ho and R. J. Scherrer, "Limits on MeV Dark Matter from the Effective Number of Neutrinos," Phys. Rev. D87, 023505 (2013), arXiv:1208.4347.
  334. O. Pisanti, A. Cirillo, S. Esposito, F. Iocco, G. Mangano, et al., "PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements," Comput.Phys.Commun. 178, 956-971 (2008), arXiv:0705.0290.
  335. A. Coc, P. Petitjean, J.-P. Uzan, E. Vangioni, P. Descouvemont, C. Iliadis, and R. Longland, "New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium," Phys. Rev. D92, 123526 (2015), arXiv:1511.03843.
  336. K. A. Olive et al. (Particle Data Group), "Review of Particle Physics," Chin. Phys. C38, 090001 (2014).
  337. Y. I. Izotov, G. Stasinska, and N. G. Guseva, "Primordial 4He abundance," Astron. Astrophys. 558, A57 (2013), arXiv:1308.2100.
  338. D. P. Finkbeiner and N. Weiner, "Exciting Dark Matter and the INTEGRAL/SPI 511 keV signal," Phys.Rev. D76, 083519 (2007), arXiv:astro- ph/0702587.
  339. M. Pospelov and A. Ritz, "The galactic 511 keV line from electroweak scale WIMPs," Phys.Lett. B651, 208-215 (2007), arXiv:hep-ph/0703128.
  340. A. R. Frey and N. B. Reid, "Cosmic microwave background constraints on dark matter models of the Galactic center 511 keV signal," Phys. Rev. D87, 103508 (2013), arXiv:1301.0819.