Curved-space magnetic monopoles
1992, Physical Review D
Abstract
Explicit solutions of the coupled Einstein-Yang-Mills-Higgs field equations representing a t Hooft-Polyakov-type magnetic monopole are constructed, both in and away from the Bogomolny-Prasad-Sommerfield limit. The solutions are seen to tend towards black-hole solutions as the strength of the gravitational coupling is increased, as might be expected. A careful analysis of solutions near the transition to a black hole shows that the monopole loses its non-Abelian hair as it develops a horizon. In certain cases, solutions without a horizon are seen to be unstable to gravitational collapse.
Key takeaways
AI
AI
- The study constructs solutions for curved-space magnetic monopoles in the Einstein-Yang-Mills-Higgs framework.
- Monopoles can transition to black holes as gravitational coupling increases, losing non-Abelian hair.
- A critical value of gravitational coupling, denoted as P_critical(a), indicates stability limits for monopole solutions.
- Numerical analysis reveals that configurations without horizons become unstable to gravitational collapse for specific coupling conditions.
- The absence of a Bogomol'nyi bound in curved space means mass conditions differ from flat space scenarios.
References (24)
- S. W. Hawking, Commun. Math. Phys. 25, 152 (1972);
- W. Israel, ibid 8, 24. 5 (1968);
- J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972);
- C. Teitelboim, ibid 5, 2. 941 (1972);
- J. B. Hartle, ibid. 3, 2938 (1971);
- P. B. Yasskin, ibid 12, 221.2 (1975).
- R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988).
- H. P. Kunzle and A. K. M. Masood ul Alam, J. Math. Phys. 31, 928 (1990);
- P. Bizon, Phys. Rev. Lett. 64, 2844 (1990);
- M. S. Volkov and D. V. Gal'tsov, Pis'ma Zh. Eksp. Teor. Fiz. 50; 312 (1989) [JETP Lett. 50, 346 (1989).
- A. M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)];
- G. 't Hooft, Nucl. Phys. B79, 276 (1974).
- P. Goddard and D. Olive, Rep. Prog. Phys. 41, 1357 (1978).
- P. van Nieuwenhuizen, D. Wilkinson, and M. J. Perry, Phys. Rev. D 13, 778 (1976).
- G. W. Gibbons, in Proceedings of the XII Autumn School on The Physical Universe, Lisbon, 1990, edited by J. Bar- row, A. B. Henriques, M. T. V. T. Lago, and M. S. Longair, Lecture Notes in Physics Vol. 383 (Springer- Verlag, Berlin, 1991).
- F. A. Bais and R. J. Russell, Phys. Rev. D 11, 2692 (1975);
- Y. M. Cho and P. G. O. Freund, ibid 12, 158.8 (1975).
- E. B. Bogomol'nyi, Yad. Fiz. 24, 861 (1976) [Sov. J. Nucl. Phys. 24, 449 (1976)].
- M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).
- I I] C. Lanczos, Applied Analysis (Prentice-Hall, Englewood CIIA's, NJ, 1956);
- E. L. Ortiz, SIAM J. Numer. Anal. 6, 480 (1969).
- I. Husseini, E. L. Ortiz, and M. E. Ortiz, Imperial College report, 1991 (unpublished).
- K. Lee, V. P. Nair, and E. J. Weinberg, this issue, Phys. Rev. D 45, 2751 (1992); Phys. Rev. Lett. 68, 1100 (1992).
- P. Breitenlohner, P. Forgacs, and D. Maison, Max- Planck-Institut Report No. MPI-Ph/91-91, 1991 (unpub- lished).