Academia.eduAcademia.edu

Outline

Curved-space magnetic monopoles

1992, Physical Review D

Abstract

Explicit solutions of the coupled Einstein-Yang-Mills-Higgs field equations representing a t Hooft-Polyakov-type magnetic monopole are constructed, both in and away from the Bogomolny-Prasad-Sommerfield limit. The solutions are seen to tend towards black-hole solutions as the strength of the gravitational coupling is increased, as might be expected. A careful analysis of solutions near the transition to a black hole shows that the monopole loses its non-Abelian hair as it develops a horizon. In certain cases, solutions without a horizon are seen to be unstable to gravitational collapse.

Key takeaways
sparkles

AI

  1. The study constructs solutions for curved-space magnetic monopoles in the Einstein-Yang-Mills-Higgs framework.
  2. Monopoles can transition to black holes as gravitational coupling increases, losing non-Abelian hair.
  3. A critical value of gravitational coupling, denoted as P_critical(a), indicates stability limits for monopole solutions.
  4. Numerical analysis reveals that configurations without horizons become unstable to gravitational collapse for specific coupling conditions.
  5. The absence of a Bogomol'nyi bound in curved space means mass conditions differ from flat space scenarios.

References (24)

  1. S. W. Hawking, Commun. Math. Phys. 25, 152 (1972);
  2. W. Israel, ibid 8, 24. 5 (1968);
  3. J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972);
  4. C. Teitelboim, ibid 5, 2. 941 (1972);
  5. J. B. Hartle, ibid. 3, 2938 (1971);
  6. P. B. Yasskin, ibid 12, 221.2 (1975).
  7. R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988).
  8. H. P. Kunzle and A. K. M. Masood ul Alam, J. Math. Phys. 31, 928 (1990);
  9. P. Bizon, Phys. Rev. Lett. 64, 2844 (1990);
  10. M. S. Volkov and D. V. Gal'tsov, Pis'ma Zh. Eksp. Teor. Fiz. 50; 312 (1989) [JETP Lett. 50, 346 (1989).
  11. A. M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)];
  12. G. 't Hooft, Nucl. Phys. B79, 276 (1974).
  13. P. Goddard and D. Olive, Rep. Prog. Phys. 41, 1357 (1978).
  14. P. van Nieuwenhuizen, D. Wilkinson, and M. J. Perry, Phys. Rev. D 13, 778 (1976).
  15. G. W. Gibbons, in Proceedings of the XII Autumn School on The Physical Universe, Lisbon, 1990, edited by J. Bar- row, A. B. Henriques, M. T. V. T. Lago, and M. S. Longair, Lecture Notes in Physics Vol. 383 (Springer- Verlag, Berlin, 1991).
  16. F. A. Bais and R. J. Russell, Phys. Rev. D 11, 2692 (1975);
  17. Y. M. Cho and P. G. O. Freund, ibid 12, 158.8 (1975).
  18. E. B. Bogomol'nyi, Yad. Fiz. 24, 861 (1976) [Sov. J. Nucl. Phys. 24, 449 (1976)].
  19. M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).
  20. I I] C. Lanczos, Applied Analysis (Prentice-Hall, Englewood CIIA's, NJ, 1956);
  21. E. L. Ortiz, SIAM J. Numer. Anal. 6, 480 (1969).
  22. I. Husseini, E. L. Ortiz, and M. E. Ortiz, Imperial College report, 1991 (unpublished).
  23. K. Lee, V. P. Nair, and E. J. Weinberg, this issue, Phys. Rev. D 45, 2751 (1992); Phys. Rev. Lett. 68, 1100 (1992).
  24. P. Breitenlohner, P. Forgacs, and D. Maison, Max- Planck-Institut Report No. MPI-Ph/91-91, 1991 (unpub- lished).