Self-gravitating Yang monopoles in all dimensions
2006, Classical and Quantum Gravity
https://doi.org/10.1088/0264-9381/23/15/007Abstract
The (2k + 2)-dimensional Einstein-Yang-Mills equations for gauge group SO(2k) (or SU(2) for k = 2 and SU(3) for k = 3) are shown to admit a family of spherically-symmetric magnetic monopole solutions, for both zero and non-zero cosmological constant Λ, characterized by a mass m and a magnetic-type charge. The k = 1 case is the Reissner-Nordstrom black hole. The k = 2 case yields a family of self-gravitating Yang monopoles. The asymptotic spacetime is Minkowski for Λ = 0 and anti-de Sitter for Λ < 0, but the total energy is infinite for k > 1. In all cases, there is an event horizon when m > m c , for some critical mass m c , which is negative for k > 1. The horizon is degenerate when m = m c , and the near-horizon solution is then an adS 2 × S 2k vacuum.
References (26)
- C. N. Yang, Generalization Of Dirac's Monopole To SU(2) Gauge Fields, J. Math. Phys. 19, 320 (1978).
- R. Jackiw and C. Rebbi, Conformal Properties Of A Yang-Mills Pseudoparticle, Phys. Rev. D 14, 517 (1976).
- S. C. Zhang and J. p. Hu, A Four Dimensional Generalization of the Quantum Hall Effect, Science 294 (2001) 823 [arXiv:cond-mat/0110572].
- B. Chen, H. Itoyama and H. Kihara, Nonabelian monopoles from matrices: Seeds of the spacetime structure, Nucl. Phys. B 577, 23 (2000) [arXiv:hep-th/9909075].
- M. Fabinger, Higher-dimensional quantum Hall effect in string theory, JHEP 0205 (2002) 037 [arXiv:hep-th/0201016].
- B. A. Bernevig, J. p. Hu, N. Toumbas and S. C. Zhang, The Eight Dimensional Quantum Hall Effect and the Octonions, Phys. Rev. Lett. 91, 236803 (2003) [arXiv:cond-mat/0306045].
- G. w. Meng, Geometric Construction of the Quantum Hall Effect in Higher Dimensions, J. Phys. A 36 (2003) 9415 [arXiv:cond-mat/0306351];
- K. Hasebe and Y. Kimura, Dimensional hierarchy in quantum Hall effects on fuzzy spheres, Phys. Lett. B 602 (2004) 255 [arXiv:hep-th/0310274].
- G. w. Meng, Dirac and Yang monopoles revisited, arXiv:math-ph/0409051.
- B. Grossman, T. W. Kephart and J. D. Stasheff, Solutions To Yang-Mills Field Equations In Eight-Dimensions And The Last Hopf Map, Commun. Math. Phys. 96 (1984) 431 [Erratum-ibid. 100 (1985) 311].
- D. H. Tchrakian, N-Dimensional Instantons And Monopoles, J. Math. Phys. 21, 166 (1980).
- C. Saclioglu, Scale Invariant Gauge Theories And Selfduality In Higher Dimen- sions, Nucl. Phys. B 277, 487 (1986).
- J. Polchinski, Open heterotic strings, arXiv:hep-th/0510033.
- S. Randjbar-Daemi, A. Salam and J. A. Strathdee, Instanton Induced Compact- ification And Fermion Chirality, Phys. Lett. B 132 (1983) 56.
- G. W. Gibbons and P. K. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett. 71 (1993) 3754 [arXiv:hep-th/9307049].
- R. Bartnik and J. Mckinnon, Particle -Like Solutions Of The Einstein Yang- Mills Equations, Phys. Rev. Lett. 61, 141 (1988).
- E. Radu and D. H. Tchrakian, No hair conjecture, nonabelian hierarchies and anti-de Sitter spacetime, Phys. Rev. D 73, 024006 (2006) [arXiv:gr-qc/0508033].
- M. Cvetic, G. W. Gibbons, H. Lu and C. N. Pope, Consistent group and coset reductions of the bosonic string, Class. Quant. Grav. 20 (2003) 5161 [arXiv:hep-th/0306043].
- D. B. Fairlie and J. Nuyts, Spherically Symmetric Solutions Of Gauge Theories In Eight-Dimensions, J. Phys. A 17, 2867 (1984).
- S. Fubini and H. Nicolai, The Octonionic Instanton, Phys. Lett. B 155 (1985) 369.
- G. W. Gibbons, M. J. Perry and C. N. Pope, Bulk/boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes, Phys. Rev. D 72, 084028 (2005) [arXiv:hep-th/0506233].
- N. Okuyama and K. i. Maeda, Five-dimensional black hole and particle solution with non-Abelian gauge field, Phys. Rev. D 67, 104012 (2003) [arXiv:gr-qc/0212022].
- A. Hosoya and W. Ogura, Wormhole Instanton Solution In The Einstein Yang- Mills System, Phys. Lett. B 225, 117 (1989).
- A. J. Macfarlane, The sphere S(6) viewed as a G(2)/SU(3) coset space, Int. J. Mod. Phys. A 17, 2595 (2002).
- T. A. Ivanova, Octonions, selfduality and strings, Phys. Lett. B 315, 277 (1993).
- M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum-ibid. B 376 (1996) 329] [arXiv:hep-th/9502009].