Academia.eduAcademia.edu

Outline

Independent set in P5-free graphs in polynomial time

2014

https://doi.org/10.5555/2634074.2634117

Abstract

The Independent Set problem is NP-hard in general, however polynomial time algorithms exist for the problem on various specific graph classes. Over the last couple of decades there has been a long sequence of papers exploring the boundary between the NP-hard and polynomial time solvable cases. In particular the complexity of Independent Set on P5-free graphs has received significant attention, and there has been a long list of results showing that the problem becomes polynomial time solvable on sub-classes of P5-free graphs. In this paper we give the first polynomial time algorithm for Independent Set on P5-free graphs. Our algorithm also works for the Weighted Independent Set problem.

References (49)

  1. V. Alekseev, The effect of local constraints on the complexity of determination of the graph independence number, Combinatorial-algebraic methods in applied mathematics, (1982), pp. 3-13. (in Russian).
  2. V. E. Alekseev, Polynomial algorithm for finding the largest independent sets in graphs without forks, Discrete Applied Mathematics, 135 (2004), pp. 3-16.
  3. V. E. Alekseev and V. V. Lozin, Augmenting graphs for independent sets, Discrete Applied Mathematics, 145 (2004), pp. 3 -10. Graph Optimization IV.
  4. S. Arora and B. Barak, Computational Complexity -A Modern Approach, Cambridge University Press, 2009.
  5. B. S. Baker, Approximation algorithms for np-complete problems on planar graphs, J. ACM, 41 (1994), pp. 153-180.
  6. E. Balas and C. S. Yu, On graphs with polynomially solvable maximal-weight clique problem, Networks, 19 (1989), pp. 247-253.
  7. J. R. S. Blair, P. Heggernes, and J. A. Telle, A practical algorithm for making filled graphs minimal, Theor. Comput. Sci., 250 (2001), pp. 125-141.
  8. J. R. S. Blair and B. W. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory and Sparse Matrix Computations, Springer, 1993, pp. 1-30. IMA Volumes in Mathematics and its Applications, Vol. 56.
  9. R. Boliac and V. V. Lozin, An augmenting graph approach to the stable set problem in P 5 -free graphs, Discrete Applied Mathematics, 131 (2003), pp. 567 -575.
  10. V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: Grouping the minimal separators, SIAM J. Comput., 31 (2001), pp. 212-232.
  11. Listing all potential maximal cliques of a graph, Theor. Comput. Sci., 276 (2002), pp. 17-32.
  12. A. Brandstädt and R. Mosca, On the structure and stability number of P 5 -and co- chair-free graphs, Discrete Applied Mathematics, 132 (2003), pp. 47 -65. Stability in Graphs and Related Topics.
  13. A. Brandstädt, J. P. Spinrad, et al., Graph classes: a survey, no. 3, Siam, 1999.
  14. H. Broersma, T. Kloks, D. Kratsch, and H. Müller, Independent sets in asteroidal triple-free graphs, SIAM J. Discrete Math., 12 (1999), pp. 276-287.
  15. P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205- 212.
  16. B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math., 86 (1990), pp. 165 -177.
  17. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo- rithms (3. ed.), MIT Press, 2009.
  18. D. Corneil, H. Lerchs, and L. Burlingham, Complement reducible graphs, Discrete Applied Mathematics, 3 (1981), pp. 163 -174.
  19. B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp. 125-150.
  20. G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71- 76.
  21. R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York, 1999.
  22. H. Flier, M. Mihalák, A. Schöbel, P. Widmayer, and A. Zych, Vertex disjoint paths for dispatching in railways, in Proceedings of ATMOS, 2010, pp. 61-73.
  23. F. V. Fomin and Y. Villanger, Finding induced subgraphs via minimal triangulations, in STACS, vol. 5 of LIPIcs, Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2010, pp. 383-394.
  24. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Series of Books in the Mathematical Sciences, W. H. Freeman and Co., 1979.
  25. F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B, 16 (1974), pp. 47-56.
  26. M. U. Gerber and V. V. Lozin, On the stable set problem in special P 5 -free graphs, Discrete Applied Mathematics, 125 (2003), pp. 215-224.
  27. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
  28. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its conse- quences in combinatorial optimization., Combinatorica, 1 (1981), pp. 169-197.
  29. P. Heggernes, Minimal triangulations of graphs: A survey, Discrete Mathematics, 306 (2006), pp. 297-317.
  30. C.-W. Ho and R. Lee, Counting clique trees and computing perfect elimination schemes in parallel, Information Processing Letters, 31 (1989), pp. 61 -68.
  31. C. T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability of P 5 -free graphs in polynomial time, Algorithmica, 57 (2010), pp. 74-81.
  32. R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci., 63 (2001), pp. 512-530.
  33. R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, 1972, pp. 85-103.
  34. T. Kloks, D. Kratsch, and J. Spinrad, On treewidth and minimum fill-in of asteroidal triple-free graphs, Theor. Comput. Sci., 175 (1997), pp. 309-335.
  35. R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615-627.
  36. D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the exponential time hypothesis, Bulletin of the EATCS, 105 (2011), pp. 41-72.
  37. V. V. Lozin and M. Milanic, A polynomial algorithm to find an independent set of maximum weight in a fork-free graph, in SODA, 2006, pp. 26-30.
  38. V. V. Lozin and R. Mosca, Independent sets in extensions of 2k 2 -free graphs, Discrete Applied Mathematics, 146 (2005), pp. 74 -80.
  39. F. Maffray and G. Morel, On 3-colorable P 5 -free graphs, SIAM Journal on Discrete Mathematics, 26 (2012), pp. 1682-1708.
  40. G. J. Minty, On maximal independent sets of vertices in claw-free graphs, Journal of Combinatorial Theory, Series B, 28 (1980), pp. 284 -304.
  41. R. Mosca, Some observations on maximum weight stable sets in certain P 5 -free graphs, European Journal of Operational Research, 184 (2008), pp. 849 -859.
  42. R. Mosca, Some results on stable sets for k-colorable P 6 -free graphs and generalizations., Discrete Mathematics & Theoretical Computer Science, 14 (2012), pp. 37-56.
  43. A. Parra and P. Scheffler, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Applied Mathematics, 79 (1997), pp. 171-188.
  44. S. Poljak, A note on stable sets and colorings of graphs, Commentationes Mathematicae Universitatis Carolinae, 15 (1974), pp. 307 -309.
  45. B. Randerath and I. Schiermeyer, On maximum independent sets in P 5 -free graphs, Discrete Applied Mathematics, 158 (2010), pp. 1041-1044.
  46. D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266-283.
  47. N. Sbihi, Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile, Discrete Mathematics, 29 (1980), pp. 53 -76.
  48. S. M. Takeshi Fukuda, Yasuhiko Morimoto and T. Tokuyama, Data mining with optimized two-dimensional association rules, ACM Transactions on Database Systems, 26 (2001), pp. 179-213.
  49. J. R. Walter, Representations of rigid cycle graphs, PhD thesis, Wayne State University, 1972.