Loop approach to lattice gauge theories
2007, Nuclear Physics B
https://doi.org/10.1016/J.NUCLPHYSB.2007.04.031Abstract
We solve the Gauss law and the corresponding Mandelstam constraints in the loop Hilbert space H L using the prepotential formulation of (d + 1) dimensional SU(2) lattice gauge theory. The resulting orthonormal and complete loop basis, explicitly constructed in terms of the d(2d − 1) prepotential intertwining operators, is used to transcribe the gauge dynamics directly in H L without any redundant gauge and loop degrees of freedom. Using generalized Wigner-Eckart theorem and Biedenharn-Elliot identity in H L , we show that the above loop dynamics for pure SU(2) lattice gauge theory in arbitrary dimension, is given by real and symmetric 3nj coefficients of the second kind (e.g., n=6, 10 for d=2, 3 respectively). The corresponding "ribbon diagrams" representing SU(2) loop dynamics are constructed. The prepotential techniques are trivially extended to include fundamental matter fields leading to a description in terms of loops and strings. The SU(N) gauge group is briefly discussed.
References (38)
- S. Mandelstam, Ann. Phys. (N.Y.) 19 (1962) 1;
- S. Mandelstam, Phys. Rev. 175 (1968) 1580;
- S. Mandelstam, Phys. Rev. D 19 (1979) 2391.
- K. G. Wilson, Phys. Rev. D 10 (1974) 2445.
- T. T. Wu, C. N. Yang, Phys. Rev. D 12 (1975) 3845.
- A. M. Polyakov, Phys. Lett. B 82 (1979) 247;
- A. A. Migdal, Phys. Rep. 102 (1983) 199;
- A. M. Polyakov, Nucl. Phys. B164 (1979) 171; N. Nambu, Phys. Lett. B 80 (1979) 372; J. L. Gervais, A. Neveu, Phys. Lett. B 80 (1979) 255; Yu. M. Makeenko and A. A. Migdal, Phys. Lett. B88 (1979) 135;
- Y. M. Makeenko, A. A. Migdal, Nucl. Phys. B 188 (1981) 269; F. Gliozzi, T. Reggeand M. A. Virasoro, Phys. Lett. B81 (1979) 178; M. Virasoro, Phys. Lett. B 82 (1979) 436; A. Jevicki and B. Sakita, Phys. Rev. D 22 (1974) 467; A. M. Polyakov, Gauge Fields and Strings (Harwood, New York, 1987);
- H. Bohr, G. Rajasekaran, Phys. Rev. D 32 (1985) 1547, ibid 1553.
- J. Kogut, L Susskind, Phys. Rev. D 11 (1975) 395.
- R. Giles, Phys. Rev. D 24 (1981) 2160.
- C. Rovelli, Quantum Gravity, Cambridge University Press, (2004);
- A. Ashtekar, Phys. Rev. Letts. 57 (1986) 2244.
- R. Gambini, Jorge Pullin, Loops, Knots, Gauge Theories and Quantum Gravity (Cambridge University Press, 2000).
- Manu Mathur, J. Phys. A 38 (2005) 10015-10026.
- Manu Mathur, Phys. Lett. B 640 (2006) 292-296.
- H. S. Sharatchandra, Nucl. Phys. B 196 (1982) 62.
- Ramesh Anishetty, H. S. Sharatchandra, Phys. Rev. Letts. 65 (1990) 81; B. Gnanapragasam, H. S. Sharatchandra, Phys. Rev. D 45 (1992) R1010; Ramesh Anishetty, Phys. Rev. D 44 (1991) 1895.
- F. Gliozzi and M.A. Virasoro, Nucl. Phys. B 164 (1980) 141.
- D. Robson, D. M. Weber, Z. Phys. C 15 (1982) 199.
- W. Furmanski, A. Kolawa, Nucl. Phys. B 291 (1987) 594.
- G. Burgio, R. De. Pietri, H. A. Morales-Tecotl, L. F. Urrutia, J. D. Vergara, Nucl. Phys. B 566 (2000), 547.
- J. Schwinger U.S Atomic Energy Commission Report NYO-3071, 1952 or D. Mattis, The Theory of Magnetism (Harper and Row, 1982).
- Manu Mathur and H. S. Mani, J. Math. Phys. 43 (2002) 5351; Manu Mathur and Diptiman Sen, J. Math. Phys. 42 (2001) 4181, J. M. Radcliffe, J. Phys. A 4 (1971) 313-323.
- Gambini R, Leal L, Trias A, Phys. Rev. D 39 (1989) 3127;
- Bartolo C, Gambini R, Leal L, Phys. Rev. D 39 (1989) 1756.
- J. Greensite, Nucl. Phys. B 166 (1980) 113;
- C. Hamer, A. Irving, T. Preece, Nucl. Phys. B 270 (1986) 536; Schütte D, Weihong Z, Hamer C J, Phys. Rev. D 55 (1997) 2974; S. Guo et. al., Phys. Rev. D 49 (1994) 507; C. Llewwllyn-Smith, N. atson, Phys. Letts. B 302 (1993) 463.
- Brügmann B, Phys. Rev. D 43 (1991) 566.
- Loll R. Nucl. Phys B 368 (1992) 121, Nucl. Phys. B 400 (1993) 126.
- Watson N. J., Phys. Letts. B 323 (1994) 385; Nucl. Phys. Proc. Suppl. (1995) 39BC 224, hep-th/9408174.
- S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B 492 (1999) 455;
- R. Brower, S. Chandrasekharan, U.-J. Wiese, Phys. Rev. D 60 (1999) 094502-1.
- D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momen- tum (World Scientific 1988).
- A. P. Yutsis, I. B. Levinson and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel rogram for Scientific Translations, Jerusalem 1962).
- T. Banks, R. Myerson, J. Kogut; Nucl. Phys. B 129 (1977) 493; J. L. Cardy, Nucl. Phys. B 205 (1982) 1; Manu Mathur, H. S. Sharatchandra, Phys. Rev. Lett. 66 (1991) 3097.
- N. D. Hari Dass, Manu Mathur, gr-qc/0611156, Class. Quantum Grav. 24 (2007) 2179.