Prepotential formulation ofSU(3) lattice gauge theory
2009, Journal of Physics A: Mathematical and Theoretical
https://doi.org/10.1088/1751-8113/43/3/035403Abstract
The SU(3) lattice gauge theory is reformulated in terms of SU(3) prepotential harmonic oscillators. This reformulation has enlarged SU (3) ⊗ U (1) ⊗ U (1) gauge invariance under which the prepotential operators transform like matter fields. The Hilbert space of SU(3) lattice gauge theory is shown to be equivalent to the Hilbert space of the prepotential formulation satisfying certain color invariant Sp(2,R) constraints. The SU(3) irreducible prepotential operators which solve these Sp(2,R) constraints are used to construct SU(3) gauge invariant Hilbert spaces at every lattice site in terms of SU(3) gauge invariant vertex operators. The electric fields and the link operators are reconstructed in terms of these SU(3) irreducible prepotential operators. We show that all the SU(3) Mandelstam constraints become local and take very simple form within this approach. We also discuss the construction of all possible linearly independent SU(3) loop states which solve the Mandelstam constraints. The techniques can be easily generalized to SU(N).
References (32)
- S. Mandelstam, Ann. Phys. (N.Y.) 19 (1962) 1;
- S. Mandelstam, Phys. Rev. 175 (1968) 1580;
- S. Mandelstam, Phys. Rev. D 19 (1979) 2391.
- K. G. Wilson, Phys. Rev. D 10 (1974) 2445.
- A. M. Polyakov, Phys. Lett. B 82 (1979) 247; (1983) 199;
- A. M. Polyakov, Nucl. Phys. B164 (1979) 171; N. Nambu, Phys. Lett. B 80 (1979) 372; J. L. Gervais, A. Neveu, Phys. Lett. B 80 (1979) 255; Yu. M. Makeenko and A. A. Migdal, Phys. Lett. B88 (1979) 135; Y. M. Makeenko, A. A. Migdal, Nucl. Phys. B 188 (1981) 269; F. Gliozzi, T. Reggeand M. A. Virasaro, Phys. Lett. B81 (1979) 178;
- M. Virasaro, Phys. Lett. B 82 (1979) 436; A. Jevicki and B. Sakita, Phys. Rev. D 22 (1974) 467; A. M. Polyakov, Gauge Fields and Strings (Harwood, New York, 1987).
- A. A. Migdal, Phys. Rep. 102 199-290 (1983).
- J. Kogut, L Susskind, Phys Rev. D 10 (1974) 3468, D 11, 395 (1975).
- R. Gambini, Jorge Pullin, Loops, Knots, Gauge Theories and Quantum Gravity (Cambridge University Press, 2000).
- As emphasized in [6]: "The proliferation of loops when one considers larger lattices and higher dimensions completely washes out the advantages provided by the (loop) formalism.", Chapter 12, page 303-304;
- Gambini R, Leal L, Trias A, Phys. Rev. D 39 (1989) 3127; Bartolo C, Gambini R, Leal L, Phys. Rev. D 39 (1989) 1756.
- Manu Mathur, Nucl. Phys. B 779, 32 (2007), Phys. Letts. B 640 (2006) 292-296.
- Manu Mathur, J. Phys. A: Math. Gen. 38 (2005) 10015.
- H. S. Sharatchandra, Nucl. Phys. B 196 (1982) 62.
- Ramesh Anishetty, H. S. Sharatchandra, Phys. Rev. Letts. 65 (1990) 81; B. Gnanapragasam, H. S. Sharatchandra, Phys. Rev. D 45 (1992) R1010;
- D. Robson, D. M. Weber, Z. Phys. C15 (1982) 199.
- W. Furmanski, A. Kolawa, Nucl. Phys. B 291 (1987) 594.
- G. Burgio, R. De. Pietri, H. A. Morales-Tecotl, L. F. Urrutia, J. D. Vergara, Nucl. Phys. B 566 (2000), 547.
- Brügmann B, Phys. Rev. D 43 (1991) 566.
- Loll R. Nucl. Phys B 368 (1992) 121, Nucl. Phys. B 400 (1993) 126.
- Watson N. J., Phys. Letts. B 323 (1994) 385; Nucl. Phys. Proc. Suppl. (1995) 39B, C 224, hep-th/9408174.
- C. Rovelli, Quantum Gravity, Cambridge University Press (2004).
- C. Rovelli, L. Smolin, Phys. Rev. D 52 (1995) 5743, [arXiv:gr-qc/9505006].
- N. D. H. Dass and Manu Mathur, Class. Quant. Grav. 24, 2179 (2007) [arXiv:gr-qc/0611156].
- S. Chaturvedi and n. Mukunda, J. Math. Phys. 43 (2002) 5262
- Ramesh Anishetty, Manu Mathur and Indrakshi Raychowdhury, J. Math. Phys. 50 (2009) 053503.
- P. Jordan, Z. Physik 94 (1935) 531, J. Schwinger U.S Atomic Energy Commission Report NYO- 3071, 1952 or D. Mattis, The Theory of Magnetism (Harper and Row, 1982).
- H. Georgi, Lie Algebras in Particle Physics (Benjamin/Cummings, Reading, 1982).
- Manu Mathur and Diptiman Sen, J. Math. Phys. 42 (2001) 4181.
- Manu Mathur and H. S. Mani, J. Math. Phys. 43 (2002) 5351.
- R. Anishetty, H. Gopalkrishna Gadiyar, Manu Mathur and H. S. Sharatchandra, Phys. Lett. B 271, (1991) 391; J. S. Prakash and H. S. Sharatchandra, J. Math. Phys. 37, (1996) 6530.