Quantum algorithms for fermionic simulations
2001, Physical Review A
https://doi.org/10.1103/PHYSREVA.64.022319Abstract
We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum computers avoid the dynamical sign problem present in classical simulations of these systems, therefore reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to our demonstration is the spin-particle connection (or generalized Jordan-Wigner transformation) that allows exact algebraic invertible mappings of operators with different statistical properties. We give an explicit implementation of a simple problem using a quantum computer based on standard qubits.
References (45)
- P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
- L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
- R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
- D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).
- M. H. Kalos, D. Levesque, and J. Verlet, Phys. Rev. A 9, 2178 (1974).
- D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
- D. M. Ceperley, in Recent Progress in Many-Body Theories, edited by E. Schachinger, H. Mitter, and M. Sormann (Plenum Press, New York, 1995), Vol. 4, pp. 455-470.
- In two spatial dimensions, other possibilities for quantum statistics emerge. For example, fractional statistics for particles called anyons interpolates continuously between bosons and fermions.
- C. D. Batista and G. Ortiz, cond-mat/0008374 (unpublished).
- From the point of view of complexity theory, an algorithm is efficient if it scales poly- nomially in time.
- G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett. 71, 2777 (1993).
- J. Bonča and J. E. Gubernatis, Phys. Rev. E 53, 6504 (1996).
- M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
- D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).
- We thank E. Fradkin for providing us with a preprint that circulated on April's fool day in 1983, where the term Grassmann chip is used as a joke. The manuscript is "Monte Carlo Simulation of a Realistic Unified Gauge Theory," by A. Chodos and J. Rabin (unpublished).
- L. Onsager, Phys. Rev. 65, 117 (1944).
- S. Bravyi and A. Kitaev, quant-ph/0003137 (unpublished).
- R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
- The system is composed of N e particles moving in d spatial dimensions ( = m = e = 1), and a generic point in a flat Cartesian manifold of dimension D = dN e is represented by R = (r 1 , • • • , r Ne ). V (R) is the potential energy operator and p i is particle's i canonical momentum.
- J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Red- wood City, 1988).
- W. von der Linden, Phys. Rep. 220, 53 (1992).
- S. Lloyd, Science 273, 1073 (1996).
- E. Knill and R. Laflamme, quant-ph/9909094 (unpublished).
- A. Barenco et al., Phys. Rev. A 52, 3457 (1995).
- D. DiVincenzo, Phys. Rev. A 51, 1015 (1995).
- From the theory of computation point of view it is necessary to make additional assump- tions on how the functions may be prescribed. In particular the functions themselves must be classically computable in a suitable sense. This problem is avoided by permitting only a finite set of quantum gates instead of continuously controllable Hamiltonians.
- A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dor- drecht, The Netherlands, 1998).
- E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411 (1997).
- R. Cleve, quant-ph/9906111 (unpublished).
- D. Aharonov, quant-ph/9812037 (unpublished).
- P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
- E. Fradkin, Phys. Rev. Lett. 63, 322 (1989).
- L. Huerta and J. Zanelli, Phys. Rev. Lett. 71, 3622 (1993).
- M. Guerrero, G. Ortiz, and J. E. Gubernatis, Phys. Rev. B 59, 1706 (1999).
- A. Y. Kitaev, quant-ph/9511026 (unpublished).
- B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 61, 2301 (2000).
- E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).
- P. W. Shor, Phys. Rev. A 52, 2493 (1995).
- A. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996).
- P. W. Shor, in Proceedings of the Symposium on the Foundations of Computer Science, edited by ? (IEEE press, Los Alamitos, California, 1996), pp. 56-65.
- D. Aharonov and M. Ben-Or, in Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC) (ACM Press, New York, New York, 1996), pp. 176-188.
- A. Y. Kitaev, in Quantum Communication, Computing and Measurement, edited by O. Hirota, A. S. Holevo, and C. M. Caves (Plenum Press, New York, 1997).
- E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).
- J. Preskill, Proc. R. Soc. Lond. A 454, 385 (1998).
- M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).