Academia.eduAcademia.edu

Outline

Quantum algorithms for fermionic simulations

2001, Physical Review A

https://doi.org/10.1103/PHYSREVA.64.022319

Abstract

We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum computers avoid the dynamical sign problem present in classical simulations of these systems, therefore reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to our demonstration is the spin-particle connection (or generalized Jordan-Wigner transformation) that allows exact algebraic invertible mappings of operators with different statistical properties. We give an explicit implementation of a simple problem using a quantum computer based on standard qubits.

References (45)

  1. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
  2. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
  3. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
  4. D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).
  5. M. H. Kalos, D. Levesque, and J. Verlet, Phys. Rev. A 9, 2178 (1974).
  6. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
  7. D. M. Ceperley, in Recent Progress in Many-Body Theories, edited by E. Schachinger, H. Mitter, and M. Sormann (Plenum Press, New York, 1995), Vol. 4, pp. 455-470.
  8. In two spatial dimensions, other possibilities for quantum statistics emerge. For example, fractional statistics for particles called anyons interpolates continuously between bosons and fermions.
  9. C. D. Batista and G. Ortiz, cond-mat/0008374 (unpublished).
  10. From the point of view of complexity theory, an algorithm is efficient if it scales poly- nomially in time.
  11. G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett. 71, 2777 (1993).
  12. J. Bonča and J. E. Gubernatis, Phys. Rev. E 53, 6504 (1996).
  13. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
  14. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).
  15. We thank E. Fradkin for providing us with a preprint that circulated on April's fool day in 1983, where the term Grassmann chip is used as a joke. The manuscript is "Monte Carlo Simulation of a Realistic Unified Gauge Theory," by A. Chodos and J. Rabin (unpublished).
  16. L. Onsager, Phys. Rev. 65, 117 (1944).
  17. S. Bravyi and A. Kitaev, quant-ph/0003137 (unpublished).
  18. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  19. The system is composed of N e particles moving in d spatial dimensions ( = m = e = 1), and a generic point in a flat Cartesian manifold of dimension D = dN e is represented by R = (r 1 , • • • , r Ne ). V (R) is the potential energy operator and p i is particle's i canonical momentum.
  20. J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Red- wood City, 1988).
  21. W. von der Linden, Phys. Rep. 220, 53 (1992).
  22. S. Lloyd, Science 273, 1073 (1996).
  23. E. Knill and R. Laflamme, quant-ph/9909094 (unpublished).
  24. A. Barenco et al., Phys. Rev. A 52, 3457 (1995).
  25. D. DiVincenzo, Phys. Rev. A 51, 1015 (1995).
  26. From the theory of computation point of view it is necessary to make additional assump- tions on how the functions may be prescribed. In particular the functions themselves must be classically computable in a suitable sense. This problem is avoided by permitting only a finite set of quantum gates instead of continuously controllable Hamiltonians.
  27. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dor- drecht, The Netherlands, 1998).
  28. E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411 (1997).
  29. R. Cleve, quant-ph/9906111 (unpublished).
  30. D. Aharonov, quant-ph/9812037 (unpublished).
  31. P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
  32. E. Fradkin, Phys. Rev. Lett. 63, 322 (1989).
  33. L. Huerta and J. Zanelli, Phys. Rev. Lett. 71, 3622 (1993).
  34. M. Guerrero, G. Ortiz, and J. E. Gubernatis, Phys. Rev. B 59, 1706 (1999).
  35. A. Y. Kitaev, quant-ph/9511026 (unpublished).
  36. B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 61, 2301 (2000).
  37. E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).
  38. P. W. Shor, Phys. Rev. A 52, 2493 (1995).
  39. A. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996).
  40. P. W. Shor, in Proceedings of the Symposium on the Foundations of Computer Science, edited by ? (IEEE press, Los Alamitos, California, 1996), pp. 56-65.
  41. D. Aharonov and M. Ben-Or, in Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC) (ACM Press, New York, New York, 1996), pp. 176-188.
  42. A. Y. Kitaev, in Quantum Communication, Computing and Measurement, edited by O. Hirota, A. S. Holevo, and C. M. Caves (Plenum Press, New York, 1997).
  43. E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).
  44. J. Preskill, Proc. R. Soc. Lond. A 454, 385 (1998).
  45. M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).