Academia.eduAcademia.edu

Outline

New Soft Set Based Class of Linear Algebraic Codes

2018, Symmetry

https://doi.org/10.3390/SYM10100510

Abstract

In this paper, we design and develop a new class of linear algebraic codes defined as soft linear algebraic codes using soft sets. The advantage of using these codes is that they have the ability to transmit m-distinct messages to m-set of receivers simultaneously. The methods of generating and decoding these new classes of soft linear algebraic codes have been developed. The notion of soft canonical generator matrix, soft canonical parity check matrix, and soft syndrome are defined to aid in construction and decoding of these codes. Error detection and correction of these codes are developed and illustrated by an example.

References (36)

  1. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3-55. [CrossRef]
  2. Shannon, C.E. Certain results in coding theory for noisy channels. Inf. Control 1957, 1, 6-25. [CrossRef]
  3. Hocquenghem, A. Codes correcteurs d'erreurs. Chiffres 1959, 2, 147-156. (In French)
  4. Bose, R.C.; Ray-Chaudhuri, D.K. On A Class of Error Correcting Binary Group Codes. Inf. Control 1960, 3, 68-79. [CrossRef]
  5. Conway, J.H.; Sloane, N.J.A. Self-dual codes over the integers modulo 4. J. Comb. Theory Ser. A 1993, 62, 30-45. [CrossRef]
  6. Dougherty, S.T.; Shiromoto, K. Maximum distance codes over rings of order 4. IEEE Trans. Inf. Theory 2001, 47, 400-404. [CrossRef]
  7. Norton, G.H.; Salagean, A. On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 2000, 46, 1060-1067. [CrossRef]
  8. Spiegel, E. Codes over Zm. Inf. Control 1977, 35, 48-51. [CrossRef]
  9. Spiegel, E. Codes over Zm, Revisited. Inf. Control 1978, 37, 100-104. [CrossRef]
  10. Von Kaenel, P.A. Fuzzy codes and distance properties. Fuzzy Sets Syst. 1982, 8, 199-204. [CrossRef]
  11. Lidl, R.; Pilz, G. Applied Abstract Algebra; Springer: New York, NY, USA, 1984.
  12. Molodtsov, D. Soft set theory-First results. Comput. Math. Appl. 1999, 37, 19-31. [CrossRef]
  13. Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338-353.
  14. Aktaş, H.; Ça gman, N. Soft sets and soft groups. Inf. Sci. 2007, 177, 2726-2735. [CrossRef]
  15. Maji, P.K. Neutrosophic Soft Set. Ann. Fuzzy Math. Inform. 2013, 5, 157-168.
  16. Shabir, M.; Ali, M.; Naz, M.; Smarandache, F. Soft neutrosophic group. Neutrosophic Sets Syst. 2013, 1, 13-25.
  17. Smarandache, F.; Ali, M.; Shabir, M. Soft Neutrosophic Algebraic Structures and Their Generalization. arXiv, 2014, arXiv:1408.5507.
  18. Ali, M.; Dyer, C.; Shabir, M.; Smarandache, F. Soft neutrosophic loops and their generalization. Neutrosophic Sets Syst. 2014, 4, 55-75.
  19. Ali, M.; Smarandache, F.; Shabir, M.; Naz, M. Soft neutrosophic ring and soft neutrosophic field. Neutrosophic Sets Syst. 2014, 3, 55-61.
  20. Ali, M.I.; Feng, F.; Liu, X.; Min, W.K.; Shabir, M. On some new operations in soft set theory. Comput. Math. Appl. 2009, 57, 1547-1553. [CrossRef]
  21. Alcantud, J.C.R. Some formal relationships among soft sets, fuzzy sets, and their extensions. Int. J. Approx. Reason. 2016, 68, 45-53. [CrossRef]
  22. Vasantha, W.B.; Selvaraj, R.S. Multi-covering radii of codes with rank metric. In Proceedings of the 2002 IEEE Information Theory Workshop (ITW 2002), Bangalore, India, 25 October 2002. [CrossRef]
  23. Vasantha, W.B.; Raja Durai, R.S. T-direct codes: An application to T-user BAC. In Proceedings of the 2002 IEEE Information Theory Workshop (ITW 2002), Bangalore, India, 25 October 2002. [CrossRef]
  24. Fatimah, F.; Rosadi, D.; Hakim, R.F.; Alcantud, J.C.R. N-soft sets and their decision making algorithms. Soft Comput. 2018, 22, 3829-3842. [CrossRef]
  25. Tuan, T.M.; Chuan, P.M.; Ali, M.; Ngan, T.T.; Mittal, M.; Son, L.H. Fuzzy and neutrosophic modeling for link prediction in social networks. Evol. Syst. 2018, 1-6. [CrossRef]
  26. Dey, A.; Son, L.; Kumar, P.; Selvachandran, G.; Quek, S. New Concepts on Vertex and Edge Coloring of Simple Vague Graphs. Symmetry 2018, 10, 373. [CrossRef]
  27. Khan, M.; Son, L.; Ali, M.; Chau, H.; Na, N.; Smarandache, F. Systematic review of decision making algorithms in extended neutrosophic sets. Symmetry 2018, 10, 314. [CrossRef] Symmetry 2018, 10, 510 10 of 10
  28. Son, L.H.; Fujita, H. Neural-fuzzy with representative sets for prediction of student performance. Appl. Intell. 2018, 1-16. [CrossRef]
  29. Jha, S.; Kumar, R.; Chatterjee, J.M.; Khari, M.; Yadav, N.; Smarandache, F. Neutrosophic soft set decision making for stock trending analysis. Evol. Syst. 2018, 1-7. [CrossRef]
  30. Ngan, R.T.; Son, L.H.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. 2018, 69, 393-425. [CrossRef]
  31. Ali, M.; Thanh, N.D.; Van Minh, N. A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures. Appl. Soft Comput. 2018, 71, 1054-1071. [CrossRef]
  32. Ali, M.; Son, L.H.; Khan, M.; Tung, N.T. Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Syst. Appl. 2018, 91, 434-441. [CrossRef]
  33. Ali, M.; Dat, L.Q.; Son, L.H.; Smarandache, F. Interval complex neutrosophic set: Formulation and applications in decision-making. Int. J. Fuzzy Syst. 2018, 20, 986-999. [CrossRef]
  34. Nguyen, G.N.; Ashour, A.S.; Dey, N. A survey of the state-of-the-arts on neutrosophic sets in biomedical diagnoses. Int. J. Mach. Learn. Cybern. 2017, 1-13. [CrossRef]
  35. Ngan, R.T.; Ali, M.; Son, L.H. δ-equality of intuitionistic fuzzy sets: A new proximity measure and applications in medical diagnosis. Appl. Intell. 2018, 48, 499-525. [CrossRef]
  36. Ali, M.; Son, L.H.; Deli, I.; Tien, N.D. Bipolar neutrosophic soft sets and applications in decision making. J. Intell. Fuzzy Syst. 2017, 33, 4077-4087. [CrossRef]