Academia.eduAcademia.edu

Outline

Multi-Fuzzy Extensions of Functions

2011, Advances in Adaptive Data Analysis

https://doi.org/10.1142/S1793536911000714

Abstract

In this paper, we study various properties of multi-fuzzy extensions of crisp functions using order homomorphisms, complete lattice homomorphisms, L-fuzzy lattices, and strong L-fuzzy lattices as bridge functions.

References (13)

  1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20: 87-96.
  2. Goguen, J. A. (1967). L-fuzzy sets. J. Math. Anal. Appl., 18: 145-174.
  3. Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, New Delhi.
  4. Plataniotis, K. N., Androutsos, D. and Venetsanopoulos, A. N. (1995). Colour image processing using fuzzy vector directional filters. Proceedings of IEEE Workshop on Nonlinear Signal Processing, pp. 535-538.
  5. Plataniotis, K. N., Androutsos, D. and Venetsanopoulos, A. N. (1998). Adaptive mul- tichannel filters for colour image processing. Signal Process. Image Commun., 11: 171-177.
  6. Sabu, S. and Ramakrishnan, T. V. (2010a). Multi-fuzzy sets. Inter. Math. Forum, 50: 2471-2476.
  7. Sabu, S. and Ramakrishnan, T. V. (2010b). Strong L-fuzzy lattices. Submitted for publication.
  8. Sabu, S. and Ramakrishnan, T. V. (2010c). Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy Inf. Eng., 4: 389-397.
  9. Sabu, S. and Ramakrishnan, T. V. (2011a). Multi-fuzzy topology. Inter. J. Appl. Math., 24: 117-129.
  10. Sabu, S. and Ramakrishnan, T. V. (2011b). Multi-fuzzy subgroups. Inter. J. Contemp. Math. Sc., 6: 365-372.
  11. Tepavčević, A. and Trajkovski, G. (2001). L-fuzzy lattices: an introduction. Fuzzy Sets and Syst., 123: 209-216.
  12. Wang, G. J. (1984). Order-homomorphism on fuzzes. Fuzzy Sets and Syst., 12: 281-288.
  13. Ying-Ming, L. and Mao-Kang, L. (1997). Fuzzy Topology, World Scientific, Singapore. Zadeh, L. A. (1965). Fuzzy sets. Inform. Contr., 8: 338-353.