Multi-Fuzzy Extensions of Functions
2011, Advances in Adaptive Data Analysis
https://doi.org/10.1142/S1793536911000714Abstract
In this paper, we study various properties of multi-fuzzy extensions of crisp functions using order homomorphisms, complete lattice homomorphisms, L-fuzzy lattices, and strong L-fuzzy lattices as bridge functions.
References (13)
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20: 87-96.
- Goguen, J. A. (1967). L-fuzzy sets. J. Math. Anal. Appl., 18: 145-174.
- Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, New Delhi.
- Plataniotis, K. N., Androutsos, D. and Venetsanopoulos, A. N. (1995). Colour image processing using fuzzy vector directional filters. Proceedings of IEEE Workshop on Nonlinear Signal Processing, pp. 535-538.
- Plataniotis, K. N., Androutsos, D. and Venetsanopoulos, A. N. (1998). Adaptive mul- tichannel filters for colour image processing. Signal Process. Image Commun., 11: 171-177.
- Sabu, S. and Ramakrishnan, T. V. (2010a). Multi-fuzzy sets. Inter. Math. Forum, 50: 2471-2476.
- Sabu, S. and Ramakrishnan, T. V. (2010b). Strong L-fuzzy lattices. Submitted for publication.
- Sabu, S. and Ramakrishnan, T. V. (2010c). Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy Inf. Eng., 4: 389-397.
- Sabu, S. and Ramakrishnan, T. V. (2011a). Multi-fuzzy topology. Inter. J. Appl. Math., 24: 117-129.
- Sabu, S. and Ramakrishnan, T. V. (2011b). Multi-fuzzy subgroups. Inter. J. Contemp. Math. Sc., 6: 365-372.
- Tepavčević, A. and Trajkovski, G. (2001). L-fuzzy lattices: an introduction. Fuzzy Sets and Syst., 123: 209-216.
- Wang, G. J. (1984). Order-homomorphism on fuzzes. Fuzzy Sets and Syst., 12: 281-288.
- Ying-Ming, L. and Mao-Kang, L. (1997). Fuzzy Topology, World Scientific, Singapore. Zadeh, L. A. (1965). Fuzzy sets. Inform. Contr., 8: 338-353.