Academia.eduAcademia.edu

Outline

C-fuzzy numbers and a dual of extension principle

2008, Information Sciences

https://doi.org/10.1016/J.INS.2007.08.028

Abstract

In this paper, we introduce and investigate the concept of c-fuzzy numbers. We extend the algebraic operations on c-fuzzy numbers, and specially study the properties of these operations on LR type c-fuzzy numbers. In addition, a dual of extension principle is introduced. It is shown that the algebraic operations with c-fuzzy numbers have a representation based on the dual of extension principle.

References (25)

  1. S. Bodjanova, Median value and median interval of a fuzzy number, Inform. Sci. 172 (2005) 73-89.
  2. C. Carlsson, R. Fuller, Fuzzy Reasoning in Decision Making and Optimization, Physica-Verlag, Heidelberg, 2002.
  3. G.J. Dijkman, H. van Haeringen, S.T. de Lange, Fuzzy numbers, J. Math. Anal. Appl. 92 (1983) 301-341.
  4. D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, California, 1980.
  5. Special issue on fuzzy numbers, in: D. Dubois, H. Prade (Eds.), Fuzzy Sets Syst. 24 (3) (1987).
  6. D. Dubois, H. Prade, Possibility Theory, An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
  7. D. Dubois, E. Kerre, R. Mesiar, H. Prade, Fuzzy interval analysis, in: D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, vol. 1, Kluwer, Dordrecht, 2000, pp. 483-582.
  8. Special issue on fuzzy arithmetic, in: R. Fuller, R. Mesiar (Eds.), Fuzzy Sets Syst. 91 (2) (1997).
  9. G. Gerla, L. Scarpati, Extension principle for fuzzy set theory, Inform. Sci. 106 (1998) 49-69.
  10. M.L. Guerra, L. Stefanini, Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets Syst. 150 (2005) 5-33.
  11. U. Ho ¨hle, Representation theorems for L-fuzzy quantities, Fuzzy Sets Syst. 5 (1981) 83-107.
  12. D.H. Hong, Fuzzy measures for a correlation coefficient of fuzzy numbers under T W -based fuzzy arithmetic operations, Inform. Sci. 176 (2006) 150-160.
  13. R. Jain, Tolerance analysis using fuzzy sets, Int. J. Syst. Sci. 7 (1976) 1393-1401.
  14. A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
  15. A. Kaufmann, M.M. Gupta, Introduction Fuzzy Arithmetic: Theory and Applications, Van Nostrand, New York, 1985.
  16. M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Sets Syst. 108 (1999) 83-90.
  17. H.T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64 (1978) 369-380.
  18. M. Oussalah, J. De Schutter, Approximated fuzzy LR computation, Inform. Sci. 153 (1997) 155-175.
  19. W. Pedrycz, Why triangular membership functions? Fuzzy Sets Syst. 64 (1994) 21-30.
  20. S.J. Press, Subjective and Objective Bayesian Statistics, second edn., J. Wiley, Hobokon, New Jersy, 2003.
  21. S.M. Taheri, J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy Sets Syst. 123 (2001) 39-48.
  22. R.R. Yager, On a general class of fuzzy connectives, Fuzzy Sets Syst. 4 (1980) 235-242.
  23. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning (I), Inform. Sci. 8 (1975) 199-249.
  24. L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
  25. H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston, 1994.