C-fuzzy numbers and a dual of extension principle
2008, Information Sciences
https://doi.org/10.1016/J.INS.2007.08.028Abstract
In this paper, we introduce and investigate the concept of c-fuzzy numbers. We extend the algebraic operations on c-fuzzy numbers, and specially study the properties of these operations on LR type c-fuzzy numbers. In addition, a dual of extension principle is introduced. It is shown that the algebraic operations with c-fuzzy numbers have a representation based on the dual of extension principle.
References (25)
- S. Bodjanova, Median value and median interval of a fuzzy number, Inform. Sci. 172 (2005) 73-89.
- C. Carlsson, R. Fuller, Fuzzy Reasoning in Decision Making and Optimization, Physica-Verlag, Heidelberg, 2002.
- G.J. Dijkman, H. van Haeringen, S.T. de Lange, Fuzzy numbers, J. Math. Anal. Appl. 92 (1983) 301-341.
- D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, California, 1980.
- Special issue on fuzzy numbers, in: D. Dubois, H. Prade (Eds.), Fuzzy Sets Syst. 24 (3) (1987).
- D. Dubois, H. Prade, Possibility Theory, An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
- D. Dubois, E. Kerre, R. Mesiar, H. Prade, Fuzzy interval analysis, in: D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, vol. 1, Kluwer, Dordrecht, 2000, pp. 483-582.
- Special issue on fuzzy arithmetic, in: R. Fuller, R. Mesiar (Eds.), Fuzzy Sets Syst. 91 (2) (1997).
- G. Gerla, L. Scarpati, Extension principle for fuzzy set theory, Inform. Sci. 106 (1998) 49-69.
- M.L. Guerra, L. Stefanini, Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets Syst. 150 (2005) 5-33.
- U. Ho ¨hle, Representation theorems for L-fuzzy quantities, Fuzzy Sets Syst. 5 (1981) 83-107.
- D.H. Hong, Fuzzy measures for a correlation coefficient of fuzzy numbers under T W -based fuzzy arithmetic operations, Inform. Sci. 176 (2006) 150-160.
- R. Jain, Tolerance analysis using fuzzy sets, Int. J. Syst. Sci. 7 (1976) 1393-1401.
- A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
- A. Kaufmann, M.M. Gupta, Introduction Fuzzy Arithmetic: Theory and Applications, Van Nostrand, New York, 1985.
- M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Sets Syst. 108 (1999) 83-90.
- H.T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64 (1978) 369-380.
- M. Oussalah, J. De Schutter, Approximated fuzzy LR computation, Inform. Sci. 153 (1997) 155-175.
- W. Pedrycz, Why triangular membership functions? Fuzzy Sets Syst. 64 (1994) 21-30.
- S.J. Press, Subjective and Objective Bayesian Statistics, second edn., J. Wiley, Hobokon, New Jersy, 2003.
- S.M. Taheri, J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy Sets Syst. 123 (2001) 39-48.
- R.R. Yager, On a general class of fuzzy connectives, Fuzzy Sets Syst. 4 (1980) 235-242.
- L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning (I), Inform. Sci. 8 (1975) 199-249.
- L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
- H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston, 1994.