Weak convergence in spaces of measures and operators
1999, Bulletin of the Belgian Mathematical Society - Simon Stevin
https://doi.org/10.36045/BBMS/1103065864Abstract
J. K. Brooks and P. W. Lewis have established that if E and E * have RNP, then in M (Σ, E), m n converges weakly to m if and only if m n (A) converges weakly to m(A) for each A ∈ Σ. Assuming the existence of a special kind of lifting, N. Randrianantoanina and E. Saab have shown an analogous result if E is a dual space. Here we show that for the space M (P(N), E) where E * is a Grothendieck space or E is a Mazur space, this kind of weak convergence is valid. Also some applications for subspaces of L(E, F ) similar to the results of N. Kalton and W. Ruess are given.
References (21)
- F. Bombal, On (V * ) sets and Pe lczyński's property (V * ), Glasgow Math. J. 32(1990), 109-120.
- J. K. Brooks, Weak compactness in the space of vector measures, Bull. Amer. Math. Soc. 78(1972), 284-287.
- J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192(1974), 139-162.
- H. S. Collins, W. Ruess, Weak compactness in the space of compact operators of vector valued functions, Pacific J. Math. 106(1983), 45-71.
- J. Diestel, Sequence and series in Banach spaces, Graduate Texts in Math. Springer Verlag, New York, 1984.
- J. Diestel, J. J. Ulh, Jr., Vector measures, Math Surveys, Vol. 15, Amer. Math. Soc. Providence, 1977.
- L. Drewnowski, When does ca(Σ, E) contain a copy of ∞ or c 0 ?, Proc. Amer. Math. Soc. 109(1990), 747-752.
- G. Emmanuele, The BD-property in L 1 (µ, E), Indiana University Math. J. 36(1987), 229-230.
- G. Emmanuele, A remark on the containment of c 0 in the space of compact operators, Math. Proc. Camb. Phil. Soc. 111 (1992), 331-335.
- N. J. Kalton, Space of compact operators, Math. Ann. 208(1974), 267-278.
- J. Mendoza, Copies of classical sequence spaces in vector valued function Ba- nach spaces, Lecture Notes in Pure and Appl. Math. 172(1996), 311-320.
- A. Pe lczyński, Banach spaces on which every unconditionally converging oper- ator is weakly compact, Bull. Acad. Pol. Sci. 10(1962), 641-648.
- N. Randrianantoanina, Complemented copies of 1 and Pe lczyński's property (V * ) in Bochner function spaces, Preprint.
- N. Randrianantoanina, E. Saab, Weak compactness in the space of vector valued measures of bounded variation, Rocky Mountain J. Math., 24(1994), 681-688.
- H. Rosenthal, A subsequence principle characterizing Banach spaces containing c 0 , Bull. Amer. Math. Soc. 30(1994), 227-233.
- W. Ruess, Duality and Geometry of spaces of compact operators, Math. Studies 90, North Holland, (1984), 59-78.
- R. A. Ryan, Complemented copies of c 0 in space of compact operators, Proc. R. Ir. Acad. 91A(1991), 239-241.
- M. Talagrand, Weak Cauchy sequence in L 1 (E), Amer. J. Math. 106(1984), 703-724.
- A. Ülger, Continuous linear operators on C(K, X) and pointwise weakly pre- compact subsets of C(K, X), Math. Proc. Camb. Phil. Soc. 111(1992), 143-150.
- J. Zafarani, Grothendieck space of compact operators, Math. Nach. 174(1995), 317-322. Department of Mathematics University of Isfahan Isfahan 81745-163
- Iran