Academia.eduAcademia.edu

Outline

Weak convergence in spaces of measures and operators

1999, Bulletin of the Belgian Mathematical Society - Simon Stevin

https://doi.org/10.36045/BBMS/1103065864

Abstract

J. K. Brooks and P. W. Lewis have established that if E and E * have RNP, then in M (Σ, E), m n converges weakly to m if and only if m n (A) converges weakly to m(A) for each A ∈ Σ. Assuming the existence of a special kind of lifting, N. Randrianantoanina and E. Saab have shown an analogous result if E is a dual space. Here we show that for the space M (P(N), E) where E * is a Grothendieck space or E is a Mazur space, this kind of weak convergence is valid. Also some applications for subspaces of L(E, F ) similar to the results of N. Kalton and W. Ruess are given.

References (21)

  1. F. Bombal, On (V * ) sets and Pe lczyński's property (V * ), Glasgow Math. J. 32(1990), 109-120.
  2. J. K. Brooks, Weak compactness in the space of vector measures, Bull. Amer. Math. Soc. 78(1972), 284-287.
  3. J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192(1974), 139-162.
  4. H. S. Collins, W. Ruess, Weak compactness in the space of compact operators of vector valued functions, Pacific J. Math. 106(1983), 45-71.
  5. J. Diestel, Sequence and series in Banach spaces, Graduate Texts in Math. Springer Verlag, New York, 1984.
  6. J. Diestel, J. J. Ulh, Jr., Vector measures, Math Surveys, Vol. 15, Amer. Math. Soc. Providence, 1977.
  7. L. Drewnowski, When does ca(Σ, E) contain a copy of ∞ or c 0 ?, Proc. Amer. Math. Soc. 109(1990), 747-752.
  8. G. Emmanuele, The BD-property in L 1 (µ, E), Indiana University Math. J. 36(1987), 229-230.
  9. G. Emmanuele, A remark on the containment of c 0 in the space of compact operators, Math. Proc. Camb. Phil. Soc. 111 (1992), 331-335.
  10. N. J. Kalton, Space of compact operators, Math. Ann. 208(1974), 267-278.
  11. J. Mendoza, Copies of classical sequence spaces in vector valued function Ba- nach spaces, Lecture Notes in Pure and Appl. Math. 172(1996), 311-320.
  12. A. Pe lczyński, Banach spaces on which every unconditionally converging oper- ator is weakly compact, Bull. Acad. Pol. Sci. 10(1962), 641-648.
  13. N. Randrianantoanina, Complemented copies of 1 and Pe lczyński's property (V * ) in Bochner function spaces, Preprint.
  14. N. Randrianantoanina, E. Saab, Weak compactness in the space of vector valued measures of bounded variation, Rocky Mountain J. Math., 24(1994), 681-688.
  15. H. Rosenthal, A subsequence principle characterizing Banach spaces containing c 0 , Bull. Amer. Math. Soc. 30(1994), 227-233.
  16. W. Ruess, Duality and Geometry of spaces of compact operators, Math. Studies 90, North Holland, (1984), 59-78.
  17. R. A. Ryan, Complemented copies of c 0 in space of compact operators, Proc. R. Ir. Acad. 91A(1991), 239-241.
  18. M. Talagrand, Weak Cauchy sequence in L 1 (E), Amer. J. Math. 106(1984), 703-724.
  19. A. Ülger, Continuous linear operators on C(K, X) and pointwise weakly pre- compact subsets of C(K, X), Math. Proc. Camb. Phil. Soc. 111(1992), 143-150.
  20. J. Zafarani, Grothendieck space of compact operators, Math. Nach. 174(1995), 317-322. Department of Mathematics University of Isfahan Isfahan 81745-163
  21. Iran