Academia.eduAcademia.edu

Outline

Employing a Parametric Model for Analytic Provenance

2014, ACM Transactions on Interactive Intelligent Systems

https://doi.org/10.1145/0000000.0000000

Abstract

We introduce a propagation-based parametric symbolic model approach to support analytic provenance. This approach combines a script language to capture and encode the analytic process and a parametrically controlled symbolic model to represent and reuse the analytic process. Our approach first appeared in a visual analytics system called CZSaw. Capturing the analyst's interactions at a meaningful system action level as CZSaw scripts creates a parametrically controlled symbolic model in the form of a directed acyclic graph capable of propagating changes. Nodes in the graph (variables in CZSaw scripts) are results (data and data visualizations) generated from user interactions. Graph edges represent dependency relationships among results. The user interacts with the variables representing entities or relations to generate the next step's results. Any change to a variable triggers the propagation mechanism to update downstream variables and in turn update data views to reflect the change. The analyst can reuse parts of the analysis process by assigning new values to a node in the middle of the graph. We evaluated this symbolic model approach through solving three IEEE VAST "Challenge" contest problems [IEEE VAST 2008; 2009; 2010]. In each Challenge the analyst first created a symbolic model to help explore, understand, analyze, and solve a particular sub-problem, and later reused the model via its dependency graph propagation mechanism to solve similar sub-problems.

References (49)

  1. AISH, R. AND WOODBURY, R. 2005. Multi-level interaction in parametric design. Proceedings of Smart Graphics 2005, 151-162.
  2. ALIAS-I. 2012. Lingpipe 4.1.0. [http://alias-i.com/lingpipe (accessed May 1st, 2010)].
  3. BENTLEY SYSTEMS, INC. 2010. Generativecomponents v8i. [http://www.bentley.com/en- us/products/generativecomponents/ (accessed May 5th, 2011)].
  4. BENZAKEN, V., FEKETE, J., H ÉMERY, P., KHEMIRI, W., AND MANOLESCU, I. 2011. Ediflow: data-intensive interactive workflows for visual analytics. In International conference on Data Engineering (ICDE 2011), Hannover, Germany, 04 2011. IEEE.
  5. CALLAHAN, S. P., FREIRE, J., SANTOS, E., SCHEIDEGGER, C. E., SILVA, C. T., AND VO, H. T. 2006. Man- aging the evolution of dataflows with vistrails. In ICDEW '06: Proceedings of the 22nd International Conference on Data Engineering Workshops. IEEE Computer Society, Washington, DC, USA, 71.
  6. CHEN, Y. V., DUNSMUIR, D., KADIVAR, N., LEE, E., GUENTHER, J., JANI, S. A., DILL, J., SHAW, C., WOOD- BURY, R., STONE, M., AND QIAN, C. 2010. Czsaw: Model based interactive analysis of interwoven, im- precise narratives, vast 2010 mini challenge 1 award: Outstanding interaction mode. In Proceedings of IEEE Visual Analytics Science and Technology 2010. IEEE, Salt Lake City, Utah.
  7. COX, P. T., P. T. 1990. Using a pictorial representation to combine dataflow and object-orientation in a language-independent programming mechanism. Glinert, E. P., editor, Visual Programming Environ- ments: Paradigms and Systems.
  8. DASSAULT SYST ÈMES SOLIDWORKS CORP. 2011. SolidWorks 2011. [http://www.solidworks.com/ (accessed August 10th, 2011)].
  9. DENNIS, J. B. 1974. First version of a data flow procedure language. In Programming Symposium, Proceed- ings Colloque sur la Programmation. Springer-Verlag, London, UK, UK, 362-376.
  10. DERTHICK, M. AND ROTH, S. F. 2001. Enhancing data exploration with a branching history of user opera- tions. Knowledge Based Systems 14, 1-2, 65-74.
  11. DUNSMUIR, D., LEE, E., SHAW, C. D., STONE, M., WOODBURY, R., AND DILL, J. 2012. A focus + context technique for visualizing a document collection. In Hawaii International Conference on System Sciences. IEEE Computer Society, Los Alamitos, CA, USA, 1835-1844.
  12. DUNSMUIR, D., Z., B. M., CHEN, Y. V., JOORABCHI, M. E., JOORABCHI, M. E., ALIMADADI, S., LEE, E., DILL, J., QIAN, C., SHAW, C., AND WOODBURY, R. 2010. Czsaw, imas & tableau: Collaboration among teams, vast 2010 mgrand challenge award: Excellent student team analysis. In Proceedings of IEEE Visual Analytics Science and Technology 2010. IEEE, Salt Lake City, Utah.
  13. ECCLES, R., KAPLER, T., HARPER, R., AND WRIGHT, W. 2007. Stories in geotime. IEEE Symposium on VAST 2007, 3-17.
  14. FRUCHTERMAN, T. M. J. AND REINGOLD, E. M. 1991. Graph drawing by force -directed placement. Soft- ware -Practice and Experience (Wiley) 21, 11.
  15. GARG, S.; NAM, J. R. I. M. K. 2008. Model-driven visual analytics. In IEEE Symposium on Visual Analytics Science and Technology. 19-26.
  16. GOTZ, D. AND ZHOU, M. X. 2008. Characterizing users' visual analytic activity for insight provenance. Information Visualization 8, 1, 42-55.
  17. HEER, J., MACKINLAY, J. D., STOLTE, C., AND AGRAWALA, M. 2008. Graphical histories for visualization: Supporting analysis, communication, and evaluation. IEEE Transactions on Visualization and Com- puter Graphics 14, 6, 1189-1196.
  18. HILS, D. D. 1992. Visual languages and computing survey: Data flow visual programming languages. Jour- nal of Visual Languages & Computing 3, 1, 69 -101.
  19. HOFFMAN, C. M. AND JOAN-ARINYO, R. 2005. A brief on constraint solving. Computer-Aided Design and Applications 2, 5, 655-664.
  20. IEEE VAST. 2008. Vast 2008 challenge mc3: Cell phone calls. [http://www.cs.umd.edu/hcil/VASTchallenge08 (accessed May 31st, 2012)].
  21. Employing a Parametric Model for Analytic Provenance :29 IEEE VAST. 2009. Vast 2009 challenge mc2: Social network and geospatial. [http://hcil.cs.umd.edu/localphp/hcil/vast/index.php (accessed May 31st, 2012)].
  22. IEEE VAST. 2010. Vast 2010 challenge mc1: Text records -investigations into arms dealing. [http://hcil.cs.umd.edu/localphp/hcil/vast10/index.php (accessed May 31st, 2012)].
  23. JAMESON, A. AND RIEDL, J. 2011. Introduction to the transactions on interactive intelligent systems. ACM Trans. Interact. Intell. Syst. 1, 1, 1:1-1:6.
  24. JANKUN-KELLY, T.J., M. K. G. M. 2007. A model and framework for visualization exploration. IEEE Trans. on Visualization and Computer Graphics 13, 2, 357-369.
  25. JOHNSTON, W. M., HANNA, J. R. P., AND MILLAR, R. J. 2004. Advances in dataflow programming lan- guages. ACM Comput. Surv. 36, 1, 1-34.
  26. KADIVAR, N. 2011. Visualizing the analysis process: Czsaw's history view. M.S. thesis, Simon Fraser Uni- versity.
  27. KADIVAR, N., CHEN, Y. V., DUNSMUIR, D., LEE, E., QIAN, C., DILL, J., SHAW, C., AND WOODBURY, R. 2009. Capturing and supporting the analysis process. In Proceedings of IEEE Visual Analytics Science and Technology. Atlantic City, NJ, 131-138.
  28. KAHN, A. B. 1962. Topological sorting of large networks. Commun. ACM 5, 11, 558-562.
  29. KESSLER, M. 1963. Bibliographic coupling between scientific papers. American Documentation 12. KREUSELER, M., NOCKE, T., AND SCHUMANN, H. 2004. A history mechanism for visual data mining. In IEEE Symposium on Information Visualization 2004. IEEE Computer Society, Austin, Texas, USA, 49- 56.
  30. MCNEEL, R. 2010. Grasshopper -generative modeling for rhino. [http://http://www.grasshopper3d.com (ac- cessed May 25th, 2012)].
  31. NIEMEYER, P. 2005. Beanshell -lightweight scripting for java. [Online; accessed May 5th, 2011].
  32. NOOY, W. D., MRVAR, A., AND BATAGELJ, V. 2005. Exploratory Social Network Analysis with Pajek. Cam- bridge University Press.
  33. NORTH, C., CHANG, R., ENDERT, A., DOU, W., MAY, R., PIKE, B., AND FINK, G. 2011. Analytic provenance: Process+interaction+insight. The 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada. 33-36.
  34. PIKE, W. A., S. J. C. R. AND O'CONNELL, T. A. 2009. The science of interaction. Information Visualiza- tion 8, 4, 263-274.
  35. PIROLLI, P. AND CARD, S. 1999. Information foraging. Psychological Review 106, 4, 643-675.
  36. RUSSELL, D.M., S. M. P. P. AND CARD, S. 1993. The cost structure of sensemaking. In Proceedings of INTERACT'93 and CHI'93 conference on Human Factors in Computing Systems. ACM Press., 269-276.
  37. SCHOLTZ, J., WHITING, M. A., PLAISANT, C., AND GRINSTEIN, G. 2012. A reflection on seven years of the vast challenge. In Proceedings of the 2012 BELIV Workshop: Beyond Time and Errors -Novel Evaluation Methods for Visualization. BELIV '12. ACM, New York, NY, USA, 13:1-13:8.
  38. SHIPMAN, F.M., H. H. 2000. Navigable history: A reader's view of writer's time. The New Review of Hyper- media and Multimedia 6, 1, 147-167.
  39. SHNEIDERMAN, B. 1996. The eyes have it: A task by data type taxonomy for information visualization. Proceedings of IEEE Visual Language, 336-343.
  40. SHRINIVASAN, Y. B. AND VAN WIJK, J. J. 2008. Supporting the analytical reasoning process in information visualization. In CHI '08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems. ACM, New York, NY, USA, 1237-1246.
  41. SILVA, C., FREIRE, J., AND CALLAHAN, S. 2007. Provenance for visualizations: Reproducibility and beyond. IEEE Computing in Science & Engineering 9, 5, 82-89.
  42. SMALL, H. 1973. Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society of Information Science 24, 265-269.
  43. STASKO, J., GORG, C., LIU, Z., AND SINGHAL, K. 2007. Jigsaw: Supporting investigative analysis through interactive visualization. IEEE Symposium on VAST 2007, 131-138.
  44. SUTHERLAND, I. E. 1963. Sketchpad, a man-machine graphical communication system. Ph.D. thesis, Mas- sachusetts Institute of Technology.
  45. THOMAS, J. J. AND COOK, K. A. 2005. Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center, 11662 Los Vaqueros Circle, Los Alamitos, CA. WOODBURY, R. 2010. Elements Of Parametric Design. Routledge.
  46. WRIGHT, W., SCHROH, D., PROULX, P., SKABURSKIS, A., AND CORT, B. 2006. The sandbox for analysis - concepts and methods. ACM CHI 2, 801-810.
  47. XIAO, L., GERTH, J., AND HANRAHAN, P. 2006. Enhancing visual analysis of network traffic using a knowl- edge representation. In Proceedings of IEEE Visual Analytics Science and Technology. 107-114.
  48. YI, J., KANG, Y., STASKO, J., AND JACKO, J. 2007. Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. on Visualization and Computer Graphics 13, 6, 1224-1231.
  49. ZIEMKIEWICZ, C., OTTLEY, A. R., CROUSER, J., CHAUNCEY, K., SU, S. L., AND CHANG, R. 2012. Un- derstanding visualization by understanding individual users. IEEE Computer Graphics and Applica- tions 32, 6, 88 -94.