Academia.eduAcademia.edu

Outline

Finite-rank intermediate Hankel operators on the Bergman space

2001, International Journal of Mathematics and Mathematical Sciences

https://doi.org/10.1155/S0161171201001971

Abstract

LetL2=L2(D,r dr dθ/π)be the Lebesgue space on the open unit disc and letLa2=L2∩ℋol(D)be the Bergman space. LetPbe the orthogonal projection ofL2ontoLa2and letQbe the orthogonal projection ontoL¯a,02={g∈L2;g¯∈La2,   g(0)=0}. ThenI−P≥Q. The big Hankel operator and the small Hankel operator onLa2are defined as: forϕinL∞,Hϕbig(f)=(I−P)(ϕf)andHϕsmall(f)=Q(ϕf)(f∈La2). In this paper, the finite-rank intermediate Hankel operators betweenHϕbigandHϕsmallare studied. We are working on the more general space, that is, the weighted Bergman space.

References (13)

  1. S. Axler and P. Bourdon, Finite-codimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 306 (1988), no. 2, 805-817. MR 89f:46051. Zbl 658.47011.
  2. S. Janson and R. Rochberg, Intermediate Hankel operators on the Bergman space, J. Op- erator Theory 29 (1993), no. 1, 137-155. MR 95b:47026. Zbl 898.47015.
  3. T. Nakazi, Invariant subspaces of weak- * Dirichlet algebras, Pacific J. Math. 69 (1977), no. 1, 151-167. MR 58#12384. Zbl 342.46044.
  4. Extended weak- * Dirichlet algebras, Pacific J. Math. 81 (1979), no. 2, 493-513. MR 82a:46055. Zbl 407.46047.
  5. Commuting dilations and uniform algebras, Canad. J. Math. 42 (1990), no. 5, 776- 789. MR 92b:46080. Zbl 762.46056.
  6. T. Nakazi and M. Yamada, Riesz's functions in weighted Hardy and Bergman spaces, Canad. J. Math. 48 (1996), no. 5, 930-945. MR 98c:46049. Zbl 862.46013.
  7. L. Z. Peng, R. Rochberg, and Z. Wu, Orthogonal polynomials and middle Hankel oper- ators on Bergman spaces, Studia Math. 102 (1992), no. 1, 57-75. MR 93b:47054. Zbl 809.30008.
  8. D. Sarason, Generalized interpolation in H ∞ , Trans. Amer. Math. Soc. 127 (1967), 179- 203. MR 34#8193. Zbl 145.39303.
  9. E. Strouse, Finite rank intermediate Hankel operators, Arch. Math. (Basel) 67 (1996), no. 2, 142-149. MR 97i:47047. Zbl 905.47014.
  10. J. L. M. Wang and Z. Wu, Minimum solution of ∂ k+1 and middle Hankel operators, J. Funct. Anal. 118 (1993), no. 1, 167-187. MR 94j:47042. Zbl 801.47017.
  11. N. Young, An Introduction to Hilbert Space, Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, New York, 1988. MR 90e:46001. Zbl 645.46024.
  12. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 92c:47031. Zbl 706.47019.
  13. Takahiko Nakazi: Department of Mathematics, Hokkaido University, Sapporo 060, Japan Tomoko Osawa: Mathematical and Scientific Subjects, Asahikawa National College of Technology, Asahikawa 071, Japan